
pylxd Documentation

Canonical Ltd

May 24, 2019

Contents

1 Installation 3

2 Getting started 5
2.1 Client . 5

3 Client Authentication 7
3.1 Generate a certificate . 7
3.2 Authenticate a new keypair . 7

4 Events 9

5 Certificates 11
5.1 Manager methods . 11
5.2 Certificate attributes . 11

6 Containers 13
6.1 Manager methods . 13
6.2 Container attributes . 13
6.3 Container methods . 14
6.4 Examples . 14
6.5 Container Snapshots . 16
6.6 Container files . 16

7 Images 19
7.1 Manager methods . 19
7.2 Image attributes . 19
7.3 Image methods . 20
7.4 Examples . 20

8 Networks 21
8.1 Manager methods . 21
8.2 Network attributes . 21
8.3 Profile methods . 22
8.4 Examples . 22

9 Profiles 23
9.1 Manager methods . 23
9.2 Profile attributes . 23

i

9.3 Profile methods . 23
9.4 Examples . 24

10 Operations 25
10.1 Manager methods . 25
10.2 Operation object methods . 25

11 Storage Pools 27
11.1 Storage Pool objects . 27
11.2 Storage Resources . 28
11.3 Storage Volumes . 29

12 Clustering 31
12.1 Cluster object . 31
12.2 Cluster Members . 32

13 Contributing 33
13.1 Adding a Feature or Fixing a Bug . 33
13.2 Requirements to merge a Pull Request (PR) . 33
13.3 Code standards . 34
13.4 Testing . 34

14 API documentation 37
14.1 Client . 37
14.2 Exceptions . 38
14.3 Certificate . 38
14.4 Container . 39
14.5 Image . 41
14.6 Network . 42
14.7 Operation . 43
14.8 Profile . 44
14.9 Storage Pool . 44
14.10 Cluster . 46

15 Indices and tables 49

ii

pylxd Documentation

Contents:

Contents 1

pylxd Documentation

2 Contents

CHAPTER 1

Installation

If you’re running on Ubuntu Xenial or greater:

sudo apt-get install python-pylxd lxd

Otherwise you can track LXD development on other Ubuntu releases:

sudo add-apt-repository ppa:ubuntu-lxc/lxd-git-master && sudo apt-get update
sudo apt-get install lxd

Or install pylxd using pip:

pip install pylxd

3

pylxd Documentation

4 Chapter 1. Installation

CHAPTER 2

Getting started

2.1 Client

Once you have installed, you’re ready to instantiate an API client to start interacting with the LXD daemon on local-
host:

>>> from pylxd import Client
>>> client = Client()

If your LXD instance is listening on HTTPS, you can pass a two part tuple of (cert, key) as the cert argument.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('/path/to/client.crt', '/path/to/client.key'))

Note: in the case where the certificate is self signed (LXD default), you may need to pass verify=False.

2.1.1 Querying LXD

LXD exposes a number of objects via its REST API that are used to orchestrate containers. Those objects are all ac-
cessed via manager attributes on the client itself. This includes certificates, containers, images, networks, operations,
and profiles. Each manager has methods for querying the LXD instance. For example, to get all containers in a LXD
instance

>>> client.containers.all()
[<container.Container at 0x7f95d8af72b0>,]

For specific manager methods, please see the documentation for each object.

5

pylxd Documentation

2.1.2 pylxd Objects

Each LXD object has an analagous pylxd object. Returning to the previous client.containers.all example, a Container
object is manipulated as such:

>>> container = client.containers.all()[0]
>>> container.name
'lxd-container'

Each pylxd object has a lifecycle which includes support for transactional changes. This lifecycle includes the follow-
ing methods and attributes:

• sync() - Synchronize the object with the server. This method is called implicitly when accessing attributes that
have not yet been populated, but may also be called explicitly. Why would attributes not yet be populated?
When retrieving objects via all, LXD’s API does not return a full representation.

• dirty - After setting attributes on the object, the object is considered “dirty”.

• rollback() - Discard all local changes to the object, opting for a representation taken from the server.

• save() - Save the object, writing changes to the server.

Returning again to the Container example

>>> container.config
{ 'security.privileged': True }
>>> container.config.update({'security.nesting': True})
>>> container.dirty
True
>>> container.rollback()
>>> container.dirty
False
>>> container.config
{ 'security.privileged': True }
>>> container.config = {'security.privileged': False}
>>> container.save(wait=True) # The object is now saved back to LXD

2.1.3 A note about asynchronous operations

Some changes to LXD will return immediately, but actually occur in the background after the http response returns.
All operations that happen this way will also take an optional wait parameter that, when True, will not return until the
operation is completed.

6 Chapter 2. Getting started

CHAPTER 3

Client Authentication

When using LXD over https, LXD uses an asymmetric keypair for authentication. The keypairs are added to the
authentication database after entering the LXD instance’s “trust password”.

3.1 Generate a certificate

To generate a keypair, you should use the openssl command. As an example:

openssl req -newkey rsa:2048 -nodes -keyout lxd.key -out lxd.csr
openssl x509 -signkey lxd.key -in lxd.csr -req -days 365 -out lxd.crt

For more detail on the commands, or to customize the keys, please see the documentation for the openssl command.

3.2 Authenticate a new keypair

If a client is created using this keypair, it would originally be “untrusted”, essentially meaning that the authentication
has not yet occurred.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('lxd.crt', 'lxd.key'))
>>> client.trusted
False

In order to authenticate the client, pass the lxd instance’s trust password to Client.authenticate

>>> client.authenticate('a-secret-trust-password')
>>> client.trusted
>>> True

7

pylxd Documentation

8 Chapter 3. Client Authentication

CHAPTER 4

Events

LXD provides an /events endpoint that is upgraded to a streaming websocket for getting LXD events in real-time. The
Client’s events method will return a websocket client that can interact with the web socket messages.

>>> ws_client = client.events()
>>> ws_client.connect()
>>> ws_client.run()

A default client class is provided, which will block indefinitely, and collect all json messages in a messages attribute.
An optional websocket_client parameter can be provided when more functionality is needed. The ws4py library is
used to establish the connection; please see the ws4py documentation for more information.

9

pylxd Documentation

10 Chapter 4. Events

CHAPTER 5

Certificates

Certificates are used to manage authentications in LXD. Certificates are not editable. They may only be created or
deleted. None of the certificate operations in LXD are asynchronous.

5.1 Manager methods

Certificates can be queried through the following client manager methods:

• all() - Retrieve all certificates.

• get() - Get a specifit certificate, by its fingerprint.

• create() - Create a new certificate. This method requires a first argument that is the LXD trust password, and the
cert data, in binary format.

5.2 Certificate attributes

Certificates have the following attributes:

• fingerprint - The fingerprint of the certificate. Certificates are keyed off this attribute.

• certificate - The certificate itself, in PEM format.

• type - The certificate type (currently only “client”)

11

pylxd Documentation

12 Chapter 5. Certificates

CHAPTER 6

Containers

Container objects are the core of LXD. Containers can be created, updated, and deleted. Most of the methods for
operating on the container itself are asynchronous, but many of the methods for getting information about the container
are synchronous.

6.1 Manager methods

Containers can be queried through the following client manager methods:

• exists(name) - Returns boolean indicating if the container exists.

• all() - Retrieve all containers.

• get() - Get a specific container, by its name.

• create(config, wait=False) - Create a new container. This method requires the container config as the first
parameter. The config itself is beyond the scope of this documentation. Please refer to the LXD documentation
for more information. This method will also return immediately, unless wait is True.

6.2 Container attributes

For more information about the specifics of these attributes, please see the LXD documentation.

• architecture - The container architecture.

• config - The container config

• created_at - The time the container was created

• devices - The devices for the container

• ephemeral - Whether the container is ephemeral

• expanded_config - An expanded version of the config

13

pylxd Documentation

• expanded_devices - An expanded version of devices

• name - (Read only) The name of the container. This attribute serves as the primary identifier of a container

• description - A description given to the container

• profiles - A list of profiles applied to the container

• status - (Read only) A string representing the status of the container

• last_used_at - (Read only) when the container was last used

• status_code - (Read only) A LXD status code of the container

• stateful - (Read only) Whether the container is stateful

6.3 Container methods

• rename - Rename a container. Because name is the key, it cannot be renamed by simply changing the name
of the container as an attribute and calling save. The new name is the first argument and, as the method is
asynchronous, you may pass wait=True as well.

• save - Update container’s configuration

• state - Get the expanded state of the container.

• start - Start the container

• stop - Stop the container

• restart - Restart the container

• freeze - Suspend the container

• unfreeze - Resume the container

• execute - Execute a command on the container. The first argument is a list, in the form of subprocess.Popen
with each item of the command as a separate item in the list. Returns a tuple of (exit_code, stdout, stderr). This
method will block while the command is executed.

• raw_interactive_execute - Execute a command on the container. It will return an url to an interactive websocket
and the execution only starts after a client connected to the websocket.

• migrate - Migrate the container. The first argument is a client connection to the destination server. This call is
asynchronous, so wait=True is optional. The container on the new client is returned.

• publish - Publish the container as an image. Note the container must be stopped in order to use this method. If
wait=True is passed, then the image is returned.

6.4 Examples

If you’d only like to fetch a single container by its name. . .

>>> client.containers.get('my-container')
<container.Container at 0x7f95d8af72b0>

If you’re looking to operate on all containers of a LXD instance, you can get a list of all LXD containers with all.

>>> client.containers.all()
[<container.Container at 0x7f95d8af72b0>,]

14 Chapter 6. Containers

pylxd Documentation

In order to create a new Container, a container config dictionary is needed, containing a name and the source. A
create operation is asynchronous, so the operation will take some time. If you’d like to wait for the container to be
created before the command returns, you’ll pass wait=True as well.

>>> config = {'name': 'my-container', 'source': {'type': 'none'}}
>>> container = client.containers.create(config, wait=False)
>>> container
<container.Container at 0x7f95d8af72b0>

If you were to use an actual image source, you would be able to operate on the container, starting, stopping, snapshot-
ting, and deleting the container.

>>> config = {'name': 'my-container', 'source': {'type': 'image', 'alias': 'ubuntu/
→˓trusty'}}
>>> container = client.containers.create(config, wait=True)
>>> container.start()
>>> container.freeze()
>>> container.delete()

Config line with a specific image source and a profile.

>>> config = {'name': 'my-container', 'source': {'type': 'image', "mode": "pull",
→˓"server":

"https://cloud-images.ubuntu.com/daily", "protocol": "simplestreams", 'alias':
→˓'bionic/amd64'},

'profiles': ['profilename'] }

To modify container’s configuration method save should be called after Container attributes changes.

>>> container = client.containers.get('my-container')
>>> container.ephemeral = False
>>> container.devices = { 'root': { 'path': '/', 'type': 'disk', 'size': '7GB'} }
>>> container.save

To get state information such as a network address.

>>> addresses = container.state().network['eth0']['addresses']
>>> addresses[0]
{'family': 'inet', 'address': '10.251.77.182', 'netmask': '24', 'scope': 'global'}

To migrate a container between two servers, first you need to create a client certificate in order to connect to the remote
server

openssl req -newkey rsa:2048 -nodes -keyout lxd.key -out lxd.csr openssl x509 -signkey lxd.key -in lxd.csr
-req -days 365 -out lxd.crt

Then you need to connect to both the destination server and the source server, the source server has to be reachable by
the destination server otherwise the migration will fail due to a websocket error

from pylxd import Client

client_source=Client(endpoint='https://192.168.1.104:8443',cert=('lxd.crt','lxd.key'),
→˓verify=False)
client_destination=Client(endpoint='https://192.168.1.106:8443',cert=('lxd.crt','lxd.
→˓key'),verify=False)
cont = client_source.containers.get('testm')
cont.migrate(client_destination,wait=True)

This will migrate the container from source server to destination server

6.4. Examples 15

pylxd Documentation

If you want an interactive shell in the container, you can attach to it via a websocket.

>>> res = container.raw_interactive_execute(['/bin/bash'])
>>> res
{

"name": "container-name",
"ws": "/1.0/operations/adbaab82-afd2-450c-a67e-274726e875b1/websocket?

→˓secret=ef3dbdc103ec5c90fc6359c8e087dcaf1bc3eb46c76117289f34a8f949e08d87",
"control": "/1.0/operations/adbaab82-afd2-450c-a67e-274726e875b1/websocket?

→˓secret=dbbc67833009339d45140671773ac55b513e78b219f9f39609247a2d10458084"
}

You can connect to this urls from e.g. https://xtermjs.org/ .

6.5 Container Snapshots

Each container carries its own manager for managing Snapshot functionality. It has get, all, and create functionality.

Snapshots are keyed by their name (and only their name, in pylxd; LXD keys them by <container-name>/<snapshot-
name>, but the manager allows us to use our own namespacing).

A container object (returned by get or all) has the following methods:

• rename - rename a snapshot

• publish - create an image from a snapshot. However, this may fail if the image from the snapshot is bigger than
the logical volume that is allocated by lxc. See https://github.com/lxc/lxd/issues/2201 for more details. The
solution is to increase the storage.lvm_volume_size parameter in lxc.

>>> snapshot = container.snapshots.get('an-snapshot')
>>> snapshot.created_at
'1983-06-16T2:38:00'
>>> snapshot.rename('backup-snapshot', wait=True)
>>> snapshot.delete(wait=True)

To create a new snapshot, use create with a name argument. If you want to capture the contents of RAM in the
snapshot, you can use stateful=True.

Note: Your LXD requires a relatively recent version of CRIU for this.

>>> snapshot = container.snapshots.create(
... 'my-backup', stateful=True, wait=True)
>>> snapshot.name
'my-backup'

6.6 Container files

Containers also have a files manager for getting and putting files on the container. The following methods are available
on the files manager:

• put - push a file into the container.

• get - get a file from the container.

16 Chapter 6. Containers

https://xtermjs.org/
https://github.com/lxc/lxd/issues/2201

pylxd Documentation

• delete_available - If the file_delete extension is available on the lxc host, then this method returns True and the
delete method is available.

• delete - delete a file on the container.

Note: All file operations use uid and gid of 0 in the container. i.e. root.

>>> filedata = open('my-script').read()
>>> container.files.put('/tmp/my-script', filedata)
>>> newfiledata = container.files.get('/tmp/my-script2')
>>> open('my-script2', 'wb').write(newfiledata)

6.6. Container files 17

pylxd Documentation

18 Chapter 6. Containers

CHAPTER 7

Images

Image objects are the base for which containers are built. Many of the methods of images are asynchronous, as they
required reading and writing large files.

7.1 Manager methods

Images can be queried through the following client manager methods:

• all() - Retrieve all images.

• get() - Get a specific image, by its fingerprint.

• get_by_alias() - Ger a specific image using its alias.

And create through the following methods, there’s also a copy method on an image:

• create(data, public=False, wait=True) - Create a new image. The first argument is the binary data of the image
itself. If the image is public, set public to True.

• create_from_simplestreams(server, alias, public=False, auto_update=False, wait=False) - Create an image
from simplestreams.

• create_from_url(url, public=False, auto_update=False, wait=False) - Create an image from a url.

7.2 Image attributes

For more information about the specifics of these attributes, please see the LXD documentation.

• aliases - A list of aliases for this image

• auto_update - Whether the image should auto-update

• architecture - The target architecture for the image

• cached - Whether the image is cached

19

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10imagesfingerprint

pylxd Documentation

• created_at - The date and time the image was created

• expires_at - The date and time the image expires

• filename - The name of the image file

• fingerprint - The image fingerprint, a sha2 hash of the image data itself. This unique key identifies the image.

• last_used_at - The last time the image was used

• properties - The configuration of image itself

• public - Whether the image is public or not

• size - The size of the image

• uploaded_at - The date and time the image was uploaded

• update_source - A dict of update informations

7.3 Image methods

• export - Export the image. Returns a file object with the contents of the image. Note: Prior to pylxd 2.1.1, this
method returned a bytestring with data; as it was not unbuffered, the API was severely limited.

• add_alias - Add an alias to the image.

• delete_alias - Remove an alias.

• copy - Copy the image to another LXD client.

7.4 Examples

Image operations follow the same protocol from the client‘s images manager (i.e. get, all, and create). Images are
keyed on a sha-1 fingerprint of the image itself. To get an image. . .

>>> image = client.images.get(
... 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855')
>>> image
<image.Image at 0x7f95d8af72b0>

Once you have an image, you can operate on it as before:

>>> image.public
False
>>> image.public = True
>>> image.save()

To create a new Image, you’ll open an image file, and pass that to create. If the image is to be public, public=True.
As this is an asynchonous operation, you may also want to wait=True.

>>> image_data = open('an_image.tar.gz', 'rb').read()
>>> image = client.images.create(image_data, public=True, wait=True)
>>> image.fingerprint
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'

20 Chapter 7. Images

CHAPTER 8

Networks

Network objects show the current networks available to LXD. Creation and / or modification of networks is possible
only if ‘network’ LXD API extension is present.

8.1 Manager methods

Networks can be queried through the following client manager methods:

• all() - Retrieve all networks.

• exists() - See if a profile with a name exists. Returns bool.

• get() - Get a specific network, by its name.

• create() - Create a new network. The name of the network is required. description, type and config are
optional and the scope of their contents is documented in the LXD documentation.

8.2 Network attributes

• name - The name of the network.

• description - The description of the network.

• type - The type of the network.

• used_by - A list of containers using this network.

• config - The configuration associated with the network.

• managed - boolean; whether LXD manages the network.

21

pylxd Documentation

8.3 Profile methods

• rename() - Rename the network.

• save() - Save the network. This uses the PUT HTTP method and not the PATCH.

• delete() - Deletes the network.

8.4 Examples

Network operations follow the same manager-style as other classes. Networks are keyed on a unique name.

>>> network = client.networks.get('lxdbr0')

>>> network
Network(config={"ipv4.address": "10.74.126.1/24", "ipv4.nat": "true", "ipv6.address":
→˓"none"}, description="", name="lxdbr0", type="bridge")

>>> print(network)
{

"name": "lxdbr0",
"description": "",
"type": "bridge",
"config": {
"ipv4.address": "10.74.126.1/24",
"ipv4.nat": "true",
"ipv6.address": "none"

},
"managed": true,
"used_by": []

}

The network can then be modified and saved.

>>> network.config['ipv4.address'] = '10.253.10.1/24'
>>> network.save()

To create a new network, use create() with a name, and optional arguments: description and type and config.

>>> network = client.networks.create(
... 'lxdbr1', description='My new network', type='bridge', config={})

>>> network = client.networks.create(
... 'lxdbr1', description='My new network', type='bridge', config={})

>>> network = client.networks.create(
... 'lxdbr1', description='My new network', type='bridge', config={})

22 Chapter 8. Networks

CHAPTER 9

Profiles

Profile describe configuration options for containers in a re-usable way.

9.1 Manager methods

Profiles can be queried through the following client manager methods:

• all() - Retrieve all profiles

• exists() - See if a profile with a name exists. Returns boolean.

• get() - Get a specific profile, by its name.

• create(name, config, devices) - Create a new profile. The name of the profile is required. config and devices
dictionaries are optional, and the scope of their contents is documented in the LXD documentation.

9.2 Profile attributes

• config - config options for containers

• description - The description of the profile

• devices - device options for containers

• name - The name of the profile

• used_by - A list of containers using this profile

9.3 Profile methods

• rename - Rename the profile.

• save - save a profile. This uses the PUT HTTP method and not the PATCH.

23

pylxd Documentation

• delete - deletes a profile.

9.4 Examples

Profile operations follow the same manager-style as Containers and Images. Profiles are keyed on a unique name.

>>> profile = client.profiles.get('my-profile')
>>> profile
<profile.Profile at 0x7f95d8af72b0>

The profile can then be modified and saved.

>>> profile.config = profile.config.update({'security.nesting': 'true'})
>>> profile.update()

To create a new profile, use create with a name, and optional config and devices config dictionaries.

>>> profile = client.profiles.create(
... 'an-profile', config={'security.nesting': 'true'},
... devices={'root': {'path': '/', 'size': '10GB', 'type': 'disk'}})

24 Chapter 9. Profiles

CHAPTER 10

Operations

Operation objects detail the status of an asynchronous operation that is taking place in the background. Some oper-
ations (e.g. image related actions) can take a long time and so the operation is performed in the background. They
return an operation id that may be used to discover the state of the operation.

10.1 Manager methods

Operations can be queried through the following client manager methods:

• get() - Get a specific operation, by its id.

• wait_for_operation() - get an operation, but wait until it is complete before returning the operation object.

10.2 Operation object methods

• wait() - Wait for the operation to complete and return. Note that this can raise a LXDAPIExceptiion if the
operations fails.

25

pylxd Documentation

26 Chapter 10. Operations

CHAPTER 11

Storage Pools

LXD supports creating and managing storage pools and storage volumes. General keys are top-level. Driver specific
keys are namespaced by driver name. Volume keys apply to any volume created in the pool unless the value is
overridden on a per-volume basis.

11.1 Storage Pool objects

StoragePool objects represent the json object that is returned from GET /1.0/storage-pools/<name> and then the
associated methods that are then available at the same endpoint.

There are also StorageResource and StorageVolume objects that represent the storage resources end-
point for a pool at GET /1.0/storage-pools/<pool>/resources and a storage volume on a pool at GET /1.0/storage-
pools/<pool>/volumes/<type>/<name>. Note that these should be accessed from the storage pool object. For exam-
ple:

client = pylxd.Client()
storage_pool = client.storage_pools.get('poolname')
storage_volume = storage_pool.volumes.get('custom', 'volumename')

Note: For more details of the LXD documentation concerning storage pools please see LXD Storage Pools REST API
Documentation and LXD Storage Pools Documentation. This provides information on the parameters and attributes
in the following methods.

Note: Please see the pylxd API documentation for more information on storage pool methods and parameters. The
following is a summary.

27

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10storage-pools
https://lxd.readthedocs.io/en/latest/storage/

pylxd Documentation

11.1.1 Storage Pool Manager methods

Storage-pools can be queried through the following client manager methods:

• all() - Return a list of storage pools.

• get() - Get a specific storage-pool, by its name.

• exists() - Return a boolean for whether a storage-pool exists by name.

• create() - Create a storage-pool. Note the config in the create class method is the WHOLE json object
described as ‘input‘ in the API docs. e.g. the ‘config’ key in the API docs would actually be config.config as
passed to this method.

11.1.2 Storage-pool Object attributes

For more information about the specifics of these attributes, please see the LXD Storage Pools REST API documen-
tation.

• name - the name of the storage pool

• driver - the driver (or type of storage pool). e.g. ‘zfs’ or ‘btrfs’, etc.

• used_by - which containers (by API endpoint /1.0/containers/<name>) are using this storage-pool.

• config - a dictionary with some information about the storage-pool. e.g. size, source (path), volume.size, etc.

• managed – Boolean that indicates whether LXD manages the pool or not.

11.1.3 Storage-pool Object methods

The following methods are available on a Storage Pool object:

• save - save a modified storage pool. This saves the config attribute in it’s entirety.

• delete - delete the storage pool.

• put - Change the LXD storage object with a passed parameter. The object is then synced back to the storage
pool object.

• patch - A more fine grained patch of the object. Note that the object is then synced back after a successful patch.

Note: raw_put and raw_patch are availble (but not documented) to allow putting and patching without syncing the
object back.

11.2 Storage Resources

Storage Resources are accessed from the storage pool object:

resources = storage_pool.resources.get()

Resources are read-only and there are no further methods available on them.

28 Chapter 11. Storage Pools

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10storage-pools

pylxd Documentation

11.3 Storage Volumes

Storage Volumes are stored in storage pools. On the pylxd API they are accessed from a storage pool object:

storage_pool = client.storage_pools.get('pool1')
volumes = storage_pool.volumes.all()
named_volume = storage_pool.volumes.get('custom', 'vol1')

11.3.1 Methods available on <storage_pool_object>.volumes

The following methods are accessed from the volumes attribute on the storage pool object.

• all - get all the volumes on the pool.

• get - a get a single, type + name volume on the pool.

• create - create a volume on the storage pool.

Note: Note that storage volumes have a tuple of type and name to uniquely identify them. At present LXD recognises
three types (but this may change), and these are container, image and custom. LXD uses container and image for
containers and images respectively. Thus, for user applications, custom seems like the type of choice. Please see the
LXD Storage Pools documentation for further details.

11.3.2 Methods available on the storage volume object

Once in possession of a storage volume object from the pylxd API, the following methods are available:

• rename - Rename a volume. This can also be used to migrate a volume from one pool to the other, as well as
migrating to a different LXD instance.

• put - Put an object to the LXD server using the storage volume details and then re-sync the object.

• patch - Patch the object on the LXD server, and then re-sync the object back.

• save - after modifying the object in place, use a PUT to push those changes to the LXD server.

• delete - delete a storage volume object. Note that the object is, therefore, stale after this action.

Note: raw_put and raw_patch are availble (but not documented) to allow putting and patching without syncing the
object back.

11.3. Storage Volumes 29

https://lxd.readthedocs.io/en/latest/storage/

pylxd Documentation

30 Chapter 11. Storage Pools

CHAPTER 12

Clustering

LXD supports clustering. There is only one cluster object.

12.1 Cluster object

The Cluster object represents the json object that is returned from GET /1.0/cluster.

There is also a ClusterMember and object that represents a cluster member at GET /1.0/cluster/members. Note
that it should be accessed from the cluster object. For example:

client = pylxd.Client()
cluster = client.cluster.get()
member = cluster.members.get('node-5')

Note: Please see the pylxd API documentation for more information on storage pool methods and parameters. The
following is a summary.

12.1.1 Cluster methods

A cluster can be queried through the following client manager methods:

• get() - Returns the cluster.

12.1.2 Cluster Object attributes

For more information about the specifics of these attributes, please see the LXD Cluster REST API documentation.

• server_name - the name of the server in the cluster

• enabled - if the node is enabled

31

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10cluster

pylxd Documentation

• member_config - configuration information for new cluster members.

12.2 Cluster Members

Cluster Members are stored in a cluster. On the pylxd API they are accessed from a cluster object:

cluster = client.cluster.get()
members = cluster.members.all()
named_member = cluster.members.get('membername')

12.2.1 Methods available on <cluster_object>.members

The following methods are accessed from the members attribute on the cluster object.

• all - get all the members of the cluster.

• get - a get a single named member of the cluster.

12.2.2 Cluster Member Object attributes

For more information about the specifics of these attributes, please see the LXD Cluster REST API documentation.

• server_name - the name of the server in the cluster

• url - the url the lxd endpoint

• database - if the distributed database is replicated on this node

• status - if the member is off or online

• message - a general message

32 Chapter 12. Clustering

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10cluster

CHAPTER 13

Contributing

pyLXD development is done on Github. Pull Requests and Issues should be filed there. We try and respond to PRs
and Issues within a few days.

If you would like to contribute major features or have big ideas, it’s best to post at the Linux Containers disucssion
forum to discuss your ideas before submitting PRs. If you use [pylxd] in the title, it’ll make it clearer.

13.1 Adding a Feature or Fixing a Bug

The main steps are:

1. There needs to be a bug filed on the Github repository. This is also for a feature, so it’s clear what is being
proposed prior to somebody starting work on it.

2. The pyLXD repository must be forked on Github to the developer’s own account.

3. The developer should create a personal branch, with either:

• feature/name-of-feature

• bug/number/descriptive-name-of-bug

This can be done with git checkout -b feature/name-of-feature from the master branch.

4. Work on that branch, push to the personal GitHub repository and then create a Pull Request. It’s a good idea to
create the Pull Request early, particularly for features, so that it can be discussed and help sought (if needed).

5. When the Pull Request is ready it will then be merged.

6. At regular intervals the pyLXD module will be released to PyPi with the new features and bug fixes.

13.2 Requirements to merge a Pull Request (PR)

In order for a Pull Request to be merged the following criteria needs to be met:

33

https://github.com/lxc/pylxd
https://discuss.linuxcontainers.org/
https://discuss.linuxcontainers.org/
https://github.com/lxc/pylxd

pylxd Documentation

1. All of the commits in the PR need to be signed off using the ‘-s’ option with git commit. This is a requirement
for all projects in the Github Linux Containers projects space.

2. Unit tests are required for the changes. These are in the pylxd/tests directory and follow the same directory
structure as the module.

3. The unit test code coverage for the project shouldn’t drop. This means that any lines that aren’t testable (for
good reasons) need to be explicitly excluded from the coverage using # NOQA comments.

4. If the feature/bug fix requires integration test changes, then they should be added to the integration direc-
tory.

5. If the feature/bug fix changes the API then the documentation in the doc/source directory should also be
updated.

6. If the contributor is new to the project, then they should add their name/details to the CONTRIBUTORS.rst
file in the root of the repository as part of the PR.

Once these requirements are met, the change will be merged to the repository. At this point, the contributor should
then delete their private branch.

13.3 Code standards

pyLXD follows PEP 8 as closely as practical. To check your compliance, use the pep8 tox target:

tox -e pep8

Note: if this fails then the code will not be merged. If there is a good reason for a PEP8 non-conformance, then a #
NOQA comment should be added to the relevant line(s).

13.4 Testing

Testing pyLXD is in 3 parts:

1. Conformance with PEP 8, using the tox -e pep8 command.

2. Unit tests using tox -e py27 and tox -e py3.

3. Integration tests using the run_integration_tests script in the root of the repository.

Note: all of the tests can be run by just using the tox command on it’s own, with the exception of the integration
tests. These are not automatically run as they require a working LXD environment.

All of the commands use the Tox automation project to run tests in a sandboxed environment. On Ubuntu this is
installed using:

sudo apt install python-tox

34 Chapter 13. Contributing

https://git-scm.com/docs/git-commit
https://github.com/lxc
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://tox.readthedocs.io/en/latest/

pylxd Documentation

13.4.1 Unit Testing

pyLXD tries to follow best practices when it comes to testing. PRs are gated by Travis CI and CodeCov. It’s best to
submit tests with new changes, as your patch is unlikely to be accepted without them.

To run the tests, you should use Tox:

tox

13.4.2 Integration Testing

Integration testing requires a running LXD system. At present this is not performed by the CI system, although this is
intended at some point in the future. Integration testing should be performed prior to merging a PR.

Currently, there are two variants of the script to run integration tests:

1. run_integration_tests-16-04

2. run_integration_tests-18-04

The default is run_integration_tests-18-04, which is symlinked to run_integration_tests. This
is because the default is to test on Ubuntu Bionic, with Ubuntu Xenial (16.04) for maintenance purposes.

Note: A script to automate running the integration tests needs to be added.

Some hints on how to run the integration tests:

1. On Ubuntu it’s probably easiest to use the Multipass snap.

2. Launch an LTS instance using multipass launch -n foo

3. Shell into the instance: multipass exec foo -- bash

4. Install tox and python2.7: sudo apt install python-tox python-2.7

5. Clone the branch from the PR (or otherwise copy the repo into the machine)

6. Configure LXD using lxd init – follow the prompts provided.

7. Run the integration tests.

13.4. Testing 35

https://travis-ci.org/lxc/pylxd
https://codecov.io/gh/lxc/pylxd
https://tox.readthedocs.io/en/latest/
https://github.com/CanonicalLtd/multipass

pylxd Documentation

36 Chapter 13. Contributing

CHAPTER 14

API documentation

14.1 Client

class pylxd.client.Client(endpoint=None, version=’1.0’, cert=None, verify=True, time-
out=None)

Client class for LXD REST API.

This client wraps all the functionality required to interact with LXD, and is meant to be the sole entry point.

containers
Instance of Client.Containers:

images
Instance of Client.Images.

operations
Instance of Client.Operations.

profiles
Instance of Client.Profiles.

api
This attribute provides tree traversal syntax to LXD’s REST API for lower-level interaction.

Use the name of the url part as attribute or item of an api object to create another api object appended with
the new url part name, ie:

>>> api = Client().api
/
>>> response = api.get()
Check status code and response
>>> print response.status_code, response.json()
/containers/test/
>>> print api.containers['test'].get().json()

assert_has_api_extension(name)
Asserts that the name api_extension exists. If not, then is raises the LXDAPIExtensionNotAvailable error.

37

pylxd Documentation

Parameters name (str) – the api_extension to test for

Returns None

Raises pylxd.exceptions.LXDAPIExtensionNotAvailable

events(websocket_client=None)
Get a websocket client for getting events.

/events is a websocket url, and so must be handled differently than most other LXD API endpoints. This
method returns a client that can be interacted with like any regular python socket.

An optional websocket_client parameter can be specified for implementation-specific handling of events
as they occur.

has_api_extension(name)
Return True if the name api extension exists.

Parameters name (str) – the api_extension to look for.

Returns True if extension exists

Return type bool

14.2 Exceptions

class pylxd.exceptions.LXDAPIException(response)
A generic exception for representing unexpected LXD API responses.

LXD API responses are clearly documented, and are either a standard return value, and background operation,
or an error. This exception is raised on an error case, or when the response status code is not expected for the
response.

This exception should only be raised in cases where the LXD REST API has returned something unexpected.

class pylxd.exceptions.NotFound(response)
An exception raised when an object is not found.

class pylxd.exceptions.ClientConnectionFailed
An exception raised when the Client connection fails.

14.3 Certificate

class pylxd.models.Certificate(client, **kwargs)
A LXD certificate.

classmethod all(client)
Get all certificates.

classmethod create(client, password, cert_data)
Create a new certificate.

classmethod get(client, fingerprint)
Get a certificate by fingerprint.

38 Chapter 14. API documentation

pylxd Documentation

14.4 Container

class pylxd.models.Container(*args, **kwargs)
An LXD Container.

This class is not intended to be used directly, but rather to be used via Client.containers.create.

class FilesManager(client, container)
A pseudo-manager for namespacing file operations.

delete_available()
File deletion is an extension API and may not be available. https://github.com/lxc/lxd/blob/master/
doc/api-extensions.md#file_delete

put(filepath, data, mode=None, uid=None, gid=None)
Push a file to the container.

This pushes a single file to the containers file system named by the filepath.
Parameters

• filepath (str) – The path in the container to to store the data in.
• data (bytes or str) – The data to store in the file.
• mode (Union[oct, int, str]) – The unit mode to store the file with. The default

of None stores the file with the current mask of 0700, which is the lxd default.
• uid (int) – The uid to use inside the container. Default of None results in 0 (root).
• gid (int) – The gid to use inside the container. Default of None results in 0 (root).

Raises LXDAPIException if something goes wrong

recursive_put(src, dst, mode=None, uid=None, gid=None)
Recursively push directory to the container.

Recursively pushes directory to the containers named by the dst
Parameters

• src (str) – The source path of directory to copy.
• dst (str) – The destination path in the container of directory to copy
• mode (Union[oct, int, str]) – The unit mode to store the file with. The default

of None stores the file with the current mask of 0700, which is the lxd default.
• uid (int) – The uid to use inside the container. Default of None results in 0 (root).
• gid (int) – The gid to use inside the container. Default of None results in 0 (root).

Raises NotADirectoryError if src is not a directory
Raises LXDAPIException if an error occurs

classmethod all(client)
Get all containers.

Containers returned from this method will only have the name set, as that is the only property returned
from LXD. If more information is needed, Container.sync is the method call that should be used.

classmethod create(client, config, wait=False, target=None)
Create a new container config.

Parameters

• client (Client) – client instance

• config (dict) – The configuration for the new container.

• wait (bool) – Whether to wait for async operations to complete.

• target (str) – If in cluster mode, the target member.

Raises LXDAPIException – if something goes wrong.

14.4. Container 39

https://github.com/lxc/lxd/blob/master/doc/api-extensions.md#file_delete
https://github.com/lxc/lxd/blob/master/doc/api-extensions.md#file_delete

pylxd Documentation

Returns a container if successful

Return type Container

execute(commands, environment={}, encoding=None, decode=True, stdin_payload=None,
stdin_encoding=’utf-8’, stdout_handler=None, stderr_handler=None)

Execute a command on the container.

In pylxd 2.2, this method will be renamed execute and the existing execute method removed.

Parameters

• commands ([str]) – The command and arguments as a list of strings

• environment ({str: str}) – The environment variables to pass with the com-
mand

• encoding (str) – The encoding to use for stdout/stderr if the param decode is True. If
encoding is None, then no override is performed and whatever the existing encoding from
LXD is used.

• decode (bool) – Whether to decode the stdout/stderr or just return the raw buffers.

• stdin_payload (Can be a file, string, bytearray, generator
or ws4py Message object) – Payload to pass via stdin

• stdin_encoding – Encoding to pass text to stdin (default utf-8)

• stdout_handler (Callable[[str], None]) – Callable than receive as first pa-
rameter each message recived via stdout

• stderr_handler (Callable[[str], None]) – Callable than receive as first pa-
rameter each message recived via stderr

Raises ValueError – if the ws4py library is not installed.

Returns The return value, stdout and stdin

Return type _ContainerExecuteResult() namedtuple

classmethod exists(client, name)
Determine whether a container exists.

freeze(timeout=30, force=True, wait=False)
Freeze the container.

generate_migration_data()
Generate the migration data.

This method can be used to handle migrations where the client connection uses the local unix socket. For
more information on migration, see Container.migrate.

classmethod get(client, name)
Get a container by name.

migrate(new_client, wait=False)
Migrate a container.

Destination host information is contained in the client connection passed in.

If the container is running, it either must be shut down first or criu must be installed on the source and
destination machines.

publish(public=False, wait=False)
Publish a container as an image.

40 Chapter 14. API documentation

pylxd Documentation

The container must be stopped in order publish it as an image. This method does not enforce that constraint,
so a LXDAPIException may be raised if this method is called on a running container.

If wait=True, an Image is returned.

raw_interactive_execute(commands, environment=None)
Execute a command on the container interactively and returns urls to websockets. The urls contain a
secret uuid, and can be accesses without further authentication. The caller has to open and manage the
websockets themselves.

Parameters

• commands ([str]) – The command and arguments as a list of strings (most likely a
shell)

• environment ({str: str}) – The environment variables to pass with the com-
mand

Returns Two urls to an interactive websocket and a control socket

Return type {‘ws’:str,’control’:str}

rename(name, wait=False)
Rename a container.

restart(timeout=30, force=True, wait=False)
Restart the container.

start(timeout=30, force=True, wait=False)
Start the container.

stop(timeout=30, force=True, wait=False)
Stop the container.

unfreeze(timeout=30, force=True, wait=False)
Unfreeze the container.

class pylxd.models.Snapshot(client, **kwargs)
A container snapshot.

publish(public=False, wait=False)
Publish a snapshot as an image.

If wait=True, an Image is returned.

This functionality is currently broken in LXD. Please see https://github.com/lxc/lxd/issues/2201 - The
implementation here is mostly a guess. Once that bug is fixed, we can verify that this works, or file a bug
to fix it appropriately.

rename(new_name, wait=False)
Rename a snapshot.

14.5 Image

class pylxd.models.Image(client, **kwargs)
A LXD Image.

add_alias(name, description)
Add an alias to the image.

classmethod all(client)
Get all images.

14.5. Image 41

https://github.com/lxc/lxd/issues/2201

pylxd Documentation

copy(new_client, public=None, auto_update=None, wait=False)
Copy an image to a another LXD.

Destination host information is contained in the client connection passed in.

classmethod create(client, image_data, metadata=None, public=False, wait=True)
Create an image.

If metadata is provided, a multipart form data request is formed to push metadata and image together in a
single request. The metadata must be a tar achive.

wait parameter is now ignored, as the image fingerprint cannot be reliably determined consistently until
after the image is indexed.

classmethod create_from_simplestreams(client, server, alias, public=False,
auto_update=False)

Copy an image from simplestreams.

classmethod create_from_url(client, url, public=False, auto_update=False)
Copy an image from an url.

delete_alias(name)
Delete an alias from the image.

classmethod exists(client, fingerprint, alias=False)
Determine whether an image exists.

If alias is True, look up the image by its alias, rather than its fingerprint.

export()
Export the image.

Because the image itself may be quite large, we stream the download in 1kb chunks, and write it to a
temporary file on disk. Once that file is closed, it is deleted from the disk.

classmethod get(client, fingerprint)
Get an image.

classmethod get_by_alias(client, alias)
Get an image by its alias.

14.6 Network

class pylxd.models.Network(client, **kwargs)
Model representing a LXD network.

classmethod all(client)
Get all networks.

Parameters client (Client) – client instance

Return type list[Network]

classmethod create(client, name, description=None, type=None, config=None)
Create a network.

Parameters

• client (Client) – client instance

• name (str) – name of the network

• description (str) – description of the network

42 Chapter 14. API documentation

pylxd Documentation

• type (str) – type of the network

• config (dict) – additional configuration

classmethod exists(client, name)
Determine whether network with provided name exists.

Parameters

• client (Client) – client instance

• name (str) – name of the network

Returns True if network exists, False otherwise

Return type bool

classmethod get(client, name)
Get a network by name.

Parameters

• client (Client) – client instance

• name (str) – name of the network

Returns network instance (if exists)

Return type Network

Raises NotFound if network does not exist

rename(new_name)
Rename a network.

Parameters new_name (str) – new name of the network

Returns Renamed network instance

Return type Network

save(*args, **kwargs)
Save data to the server.

This method should write the new data to the server via marshalling. It should be a no-op when the object
is not dirty, to prevent needless I/O.

14.7 Operation

class pylxd.models.Operation(**kwargs)
A LXD operation.

classmethod get(client, operation_id)
Get an operation.

wait()
Wait for the operation to complete and return.

classmethod wait_for_operation(client, operation_id)
Get an operation and wait for it to complete.

14.7. Operation 43

pylxd Documentation

14.8 Profile

class pylxd.models.Profile(client, **kwargs)
A LXD profile.

classmethod all(client)
Get all profiles.

classmethod create(client, name, config=None, devices=None)
Create a profile.

classmethod exists(client, name)
Determine whether a profile exists.

classmethod get(client, name)
Get a profile.

rename(new_name)
Rename the profile.

14.9 Storage Pool

class pylxd.models.StoragePool(*args, **kwargs)
An LXD storage_pool.

This corresponds to the LXD endpoint at /1.0/storage-pools

api_extension: ‘storage’

classmethod all(client)
Get all storage_pools.

Implements GET /1.0/storage-pools

Note that the returned list is ‘sparse’ in that only the name of the pool is populated. If any of the attributes
are used, then the sync function is called to populate the object fully.

Parameters client (pylxd.client.Client) – The pylxd client object

Returns a storage pool if successful, raises NotFound if not found

Return type [pylxd.models.storage_pool.StoragePool]

Raises pylxd.exceptions.LXDAPIExtensionNotAvailable if the ‘storage’ api ex-
tension is missing.

api
Provides an object with the endpoint:

/1.0/storage-pools/<self.name>

Used internally to construct endpoints.

Returns an API node with the named endpoint

Return type pylxd.client._APINode

classmethod create(client, definition)
Create a storage_pool from config.

Implements POST /1.0/storage-pools

The definition parameter defines what the storage pool will be. An example config for the zfs driver is:

44 Chapter 14. API documentation

pylxd Documentation

{

“config”: { “size”: “10GB”

}, “driver”: “zfs”, “name”: “pool1”

}

Note that all fields in the definition parameter are strings.

For further details on the storage pool types see: https://lxd.readthedocs.io/en/latest/storage/

The function returns the a StoragePool instance, if it is successfully created, otherwise an Exception is
raised.

Parameters

• client (pylxd.client.Client) – The pylxd client object

• definition (dict) – the fields to pass to the LXD API endpoint

Returns a storage pool if successful, raises NotFound if not found

Return type pylxd.models.storage_pool.StoragePool

Raises pylxd.exceptions.LXDAPIExtensionNotAvailable if the ‘storage’ api ex-
tension is missing.

Raises pylxd.exceptions.LXDAPIException if the storage pool couldn’t be created.

delete()
Delete the storage pool.

Implements DELETE /1.0/storage-pools/<self.name>

Deleting a storage pool may fail if it is being used. See the LXD documentation for further details.

Raises pylxd.exceptions.LXDAPIException if the storage pool can’t be deleted.

classmethod exists(client, name)
Determine whether a storage pool exists.

A convenience method to determine a pool exists. However, it is better to try to fetch it and catch the
pylxd.exceptions.NotFound exception, as otherwise the calling code is like to fetch the pool
twice. Only use this if the calling code doesn’t need the actual storage pool information.

Parameters

• client (pylxd.client.Client) – The pylxd client object

• name (str) – the name of the storage pool to get

Returns True if the storage pool exists, False if it doesn’t.

Return type bool

Raises pylxd.exceptions.LXDAPIExtensionNotAvailable if the ‘storage’ api ex-
tension is missing.

classmethod get(client, name)
Get a storage_pool by name.

Implements GET /1.0/storage-pools/<name>

Parameters

• client (pylxd.client.Client) – The pylxd client object

• name (str) – the name of the storage pool to get

14.9. Storage Pool 45

https://lxd.readthedocs.io/en/latest/storage/

pylxd Documentation

Returns a storage pool if successful, raises NotFound if not found

Return type pylxd.models.storage_pool.StoragePool

Raises pylxd.exceptions.NotFound

Raises pylxd.exceptions.LXDAPIExtensionNotAvailable if the ‘storage’ api ex-
tension is missing.

patch(patch_object, wait=False)
Patch the storage pool.

Implements PATCH /1.0/storage-pools/<self.name>

Patching the object allows for more fine grained changes to the config. The object is refreshed if the
PATCH is successful. If this is not required, then use the client api directly.

Parameters

• patch_object (dict) – A dictionary. The most useful key will be the config key.

• wait (bool) – Whether to wait for async operations to complete.

Raises pylxd.exceptions.LXDAPIException if the storage pool can’t be modified.

put(put_object, wait=False)
Put the storage pool.

Implements PUT /1.0/storage-pools/<self.name>

Putting to a storage pool may fail if the new configuration is incompatible with the pool. See the LXD
documentation for further details.

Note that the object is refreshed with a sync if the PUT is successful. If this is not desired, then the raw
API on the client should be used.

Parameters

• put_object (dict) – A dictionary. The most useful key will be the config key.

• wait (bool) – Whether to wait for async operations to complete.

Raises pylxd.exceptions.LXDAPIException if the storage pool can’t be modified.

save(wait=False)
Save the model using PUT back to the LXD server.

Implements PUT /1.0/storage-pools/<self.name> automagically

The fields affected are: description and config. Note that they are replaced in their entirety. If finer grained
control is required, please use the patch() method directly.

Updating a storage pool may fail if the config is not acceptable to LXD. An LXDAPIException will be
generated in that case.

Raises pylxd.exceptions.LXDAPIException if the storage pool can’t be deleted.

14.10 Cluster

class pylxd.models.Cluster(*args, **kwargs)
An LXD Cluster.

classmethod get(client, *args)
Get cluster details

46 Chapter 14. API documentation

pylxd Documentation

class pylxd.models.ClusterMember(client, **kwargs)
A LXD cluster member.

classmethod all(client, *args)
Get all cluster members.

classmethod get(client, server_name)
Get a cluster member by name.

14.10. Cluster 47

pylxd Documentation

48 Chapter 14. API documentation

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

49

pylxd Documentation

50 Chapter 15. Indices and tables

Index

A
add_alias() (pylxd.models.Image method), 41
all() (pylxd.models.Certificate class method), 38
all() (pylxd.models.ClusterMember class method), 47
all() (pylxd.models.Container class method), 39
all() (pylxd.models.Image class method), 41
all() (pylxd.models.Network class method), 42
all() (pylxd.models.Profile class method), 44
all() (pylxd.models.StoragePool class method), 44
api (pylxd.client.Client attribute), 37
api (pylxd.models.StoragePool attribute), 44
assert_has_api_extension()

(pylxd.client.Client method), 37

C
Certificate (class in pylxd.models), 38
Client (class in pylxd.client), 37
ClientConnectionFailed (class in

pylxd.exceptions), 38
Cluster (class in pylxd.models), 46
ClusterMember (class in pylxd.models), 46
Container (class in pylxd.models), 39
Container.FilesManager (class in pylxd.models),

39
containers (pylxd.client.Client attribute), 37
copy() (pylxd.models.Image method), 41
create() (pylxd.models.Certificate class method), 38
create() (pylxd.models.Container class method), 39
create() (pylxd.models.Image class method), 42
create() (pylxd.models.Network class method), 42
create() (pylxd.models.Profile class method), 44
create() (pylxd.models.StoragePool class method), 44
create_from_simplestreams()

(pylxd.models.Image class method), 42
create_from_url() (pylxd.models.Image class

method), 42

D
delete() (pylxd.models.StoragePool method), 45

delete_alias() (pylxd.models.Image method), 42
delete_available()

(pylxd.models.Container.FilesManager
method), 39

E
events() (pylxd.client.Client method), 38
execute() (pylxd.models.Container method), 40
exists() (pylxd.models.Container class method), 40
exists() (pylxd.models.Image class method), 42
exists() (pylxd.models.Network class method), 43
exists() (pylxd.models.Profile class method), 44
exists() (pylxd.models.StoragePool class method), 45
export() (pylxd.models.Image method), 42

F
freeze() (pylxd.models.Container method), 40

G
generate_migration_data()

(pylxd.models.Container method), 40
get() (pylxd.models.Certificate class method), 38
get() (pylxd.models.Cluster class method), 46
get() (pylxd.models.ClusterMember class method), 47
get() (pylxd.models.Container class method), 40
get() (pylxd.models.Image class method), 42
get() (pylxd.models.Network class method), 43
get() (pylxd.models.Operation class method), 43
get() (pylxd.models.Profile class method), 44
get() (pylxd.models.StoragePool class method), 45
get_by_alias() (pylxd.models.Image class method),

42

H
has_api_extension() (pylxd.client.Client

method), 38

I
Image (class in pylxd.models), 41

51

pylxd Documentation

images (pylxd.client.Client attribute), 37

L
LXDAPIException (class in pylxd.exceptions), 38

M
migrate() (pylxd.models.Container method), 40

N
Network (class in pylxd.models), 42
NotFound (class in pylxd.exceptions), 38

O
Operation (class in pylxd.models), 43
operations (pylxd.client.Client attribute), 37

P
patch() (pylxd.models.StoragePool method), 46
Profile (class in pylxd.models), 44
profiles (pylxd.client.Client attribute), 37
publish() (pylxd.models.Container method), 40
publish() (pylxd.models.Snapshot method), 41
put() (pylxd.models.Container.FilesManager method),

39
put() (pylxd.models.StoragePool method), 46

R
raw_interactive_execute()

(pylxd.models.Container method), 41
recursive_put() (pylxd.models.Container.FilesManager

method), 39
rename() (pylxd.models.Container method), 41
rename() (pylxd.models.Network method), 43
rename() (pylxd.models.Profile method), 44
rename() (pylxd.models.Snapshot method), 41
restart() (pylxd.models.Container method), 41

S
save() (pylxd.models.Network method), 43
save() (pylxd.models.StoragePool method), 46
Snapshot (class in pylxd.models), 41
start() (pylxd.models.Container method), 41
stop() (pylxd.models.Container method), 41
StoragePool (class in pylxd.models), 44

U
unfreeze() (pylxd.models.Container method), 41

W
wait() (pylxd.models.Operation method), 43
wait_for_operation() (pylxd.models.Operation

class method), 43

52 Index

	Installation
	Getting started
	Client

	Client Authentication
	Generate a certificate
	Authenticate a new keypair

	Events
	Certificates
	Manager methods
	Certificate attributes

	Containers
	Manager methods
	Container attributes
	Container methods
	Examples
	Container Snapshots
	Container files

	Images
	Manager methods
	Image attributes
	Image methods
	Examples

	Networks
	Manager methods
	Network attributes
	Profile methods
	Examples

	Profiles
	Manager methods
	Profile attributes
	Profile methods
	Examples

	Operations
	Manager methods
	Operation object methods

	Storage Pools
	Storage Pool objects
	Storage Resources
	Storage Volumes

	Clustering
	Cluster object
	Cluster Members

	Contributing
	Adding a Feature or Fixing a Bug
	Requirements to merge a Pull Request (PR)
	Code standards
	Testing

	API documentation
	Client
	Exceptions
	Certificate
	Container
	Image
	Network
	Operation
	Profile
	Storage Pool
	Cluster

	Indices and tables

