
pylxd Documentation
Release

Canonical Ltd

Mar 09, 2018

Contents

1 Installation 3

2 Getting started 5
2.1 Client . 5

3 Client Authentication 7
3.1 Generate a certificate . 7
3.2 Authenticate a new keypair . 7

4 Events 9

5 Certificates 11
5.1 Manager methods . 11
5.2 Certificate attributes . 11

6 Containers 13
6.1 Manager methods . 13
6.2 Container attributes . 13
6.3 Container methods . 14
6.4 Examples . 14
6.5 Container Snapshots . 15
6.6 Container files . 16

7 Images 17
7.1 Manager methods . 17
7.2 Image attributes . 17
7.3 Image methods . 18
7.4 Examples . 18

8 Networks 19
8.1 Manager methods . 19
8.2 Network attributes . 19

9 Profiles 21
9.1 Manager methods . 21
9.2 Profile attributes . 21
9.3 Profile methods . 21
9.4 Examples . 22

i

10 Operations 23
10.1 Manager methods . 23
10.2 Operation object methods . 23

11 Storage Pools 25
11.1 Manager methods . 25
11.2 Storage-pool attributes . 25
11.3 Storage-pool methods . 26

12 Contributing 27
12.1 Code standards . 27
12.2 Testing . 27

13 API documentation 29
13.1 Client . 29
13.2 Exceptions . 30
13.3 Certificate . 30
13.4 Container . 30
13.5 Image . 32
13.6 Network . 33
13.7 Operation . 33
13.8 Profile . 33
13.9 Storage Pool . 34

14 Indices and tables 35

ii

pylxd Documentation, Release

Contents:

Contents 1

pylxd Documentation, Release

2 Contents

CHAPTER 1

Installation

If you’re running on Ubuntu Xenial or greater:

sudo apt-get install python-pylxd lxd

Otherwise you can track LXD development on other Ubuntu releases:

sudo add-apt-repository ppa:ubuntu-lxc/lxd-git-master && sudo apt-get update
sudo apt-get install lxd

Or install pylxd using pip:

pip install pylxd

3

pylxd Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Getting started

2.1 Client

Once you have installed, you’re ready to instantiate an API client to start interacting with the LXD daemon on local-
host:

>>> from pylxd import Client
>>> client = Client()

If your LXD instance is listening on HTTPS, you can pass a two part tuple of (cert, key) as the cert argument.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('/path/to/client.crt', '/path/to/client.key'))

Note: in the case where the certificate is self signed (LXD default), you may need to pass verify=False.

2.1.1 Querying LXD

LXD exposes a number of objects via its REST API that are used to orchestrate containers. Those objects are all ac-
cessed via manager attributes on the client itself. This includes certificates, containers, images, networks, operations,
and profiles. Each manager has methods for querying the LXD instance. For example, to get all containers in a LXD
instance

>>> client.containers.all()
[<container.Container at 0x7f95d8af72b0>,]

For specific manager methods, please see the documentation for each object.

5

pylxd Documentation, Release

2.1.2 pylxd Objects

Each LXD object has an analagous pylxd object. Returning to the previous client.containers.all example, a Container
object is manipulated as such:

>>> container = client.containers.all()[0]
>>> container.name
'lxd-container'

Each pylxd object has a lifecycle which includes support for transactional changes. This lifecycle includes the follow-
ing methods and attributes:

• sync() - Synchronize the object with the server. This method is called implicitly when accessing attributes that
have not yet been populated, but may also be called explicitly. Why would attributes not yet be populated?
When retrieving objects via all, LXD’s API does not return a full representation.

• dirty - After setting attributes on the object, the object is considered “dirty”.

• rollback() - Discard all local changes to the object, opting for a representation taken from the server.

• save() - Save the object, writing changes to the server.

Returning again to the Container example

>>> container.config
{ 'security.privileged': True }
>>> container.config.update({'security.nesting': True})
>>> container.dirty
True
>>> container.rollback()
>>> container.dirty
False
>>> container.config
{ 'security.privileged': True }
>>> container.config = {'security.privileged': False}
>>> container.save(wait=True) # The object is now saved back to LXD

2.1.3 A note about asynchronous operations

Some changes to LXD will return immediately, but actually occur in the background after the http response returns.
All operations that happen this way will also take an optional wait parameter that, when True, will not return until the
operation is completed.

6 Chapter 2. Getting started

CHAPTER 3

Client Authentication

When using LXD over https, LXD uses an asymmetric keypair for authentication. The keypairs are added to the
authentication database after entering the LXD instance’s “trust password”.

3.1 Generate a certificate

To generate a keypair, you should use the openssl command. As an example:

openssl req -newkey rsa:2048 -nodes -keyout lxd.key -out lxd.csr
openssl x509 -signkey lxd.key -in lxd.csr -req -days 365 -out lxd.crt

For more detail on the commands, or to customize the keys, please see the documentation for the openssl command.

3.2 Authenticate a new keypair

If a client is created using this keypair, it would originally be “untrusted”, essentially meaning that the authentication
has not yet occurred.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('lxd.crt', 'lxd.key'))
>>> client.trusted
False

In order to authenticate the client, pass the lxd instance’s trust password to Client.authenticate

>>> client.authenticate('a-secret-trust-password')
>>> client.trusted
>>> True

7

pylxd Documentation, Release

8 Chapter 3. Client Authentication

CHAPTER 4

Events

LXD provides an /events endpoint that is upgraded to a streaming websocket for getting LXD events in real-time. The
Client’s events method will return a websocket client that can interact with the web socket messages.

>>> ws_client = client.events()
>>> ws_client.connect()
>>> ws_client.run()

A default client class is provided, which will block indefinitely, and collect all json messages in a messages attribute.
An optional websocket_client parameter can be provided when more functionality is needed. The ws4py library is
used to establish the connection; please see the ws4py documentation for more information.

9

pylxd Documentation, Release

10 Chapter 4. Events

CHAPTER 5

Certificates

Certificates are used to manage authentications in LXD. Certificates are not editable. They may only be created or
deleted. None of the certificate operations in LXD are asynchronous.

5.1 Manager methods

Certificates can be queried through the following client manager methods:

• all() - Retrieve all certificates.

• get() - Get a specifit certificate, by its fingerprint.

• create() - Create a new certificate. This method requires a first argument that is the LXD trust password, and the
cert data, in binary format.

5.2 Certificate attributes

Certificates have the following attributes:

• fingerprint - The fingerprint of the certificate. Certificates are keyed off this attribute.

• certificate - The certificate itself, in PEM format.

• type - The certificate type (currently only “client”)

11

pylxd Documentation, Release

12 Chapter 5. Certificates

CHAPTER 6

Containers

Container objects are the core of LXD. Containers can be created, updated, and deleted. Most of the methods for
operating on the container itself are asynchronous, but many of the methods for getting information about the container
are synchronous.

6.1 Manager methods

Containers can be queried through the following client manager methods:

• exists(name) - Returns boolean indicating if the container exists.

• all() - Retrieve all containers.

• get() - Get a specific container, by its name.

• create(config, wait=False) - Create a new container. This method requires the container config as the first
parameter. The config itself is beyond the scope of this documentation. Please refer to the LXD documentation
for more information. This method will also return immediately, unless wait is True.

6.2 Container attributes

For more information about the specifics of these attributes, please see the LXD documentation.

• architecture - The container architecture.

• config - The container config

• created_at - The time the container was created

• devices - The devices for the container

• ephemeral - Whether the container is ephemeral

• expanded_config - An expanded version of the config

13

pylxd Documentation, Release

• expanded_devices - An expanded version of devices

• name - (Read only) The name of the container. This attribute serves as the primary identifier of a container

• description - A description given to the container

• profiles - A list of profiles applied to the container

• status - (Read only) A string representing the status of the container

• last_used_at - (Read only) when the container was last used

• status_code - (Read only) A LXD status code of the container

• stateful - (Read only) Whether the container is stateful

6.3 Container methods

• rename - Rename a container. Because name is the key, it cannot be renamed by simply changing the name
of the container as an attribute and calling save. The new name is the first argument and, as the method is
asynchronous, you may pass wait=True as well.

• save - Update container’s configuration

• state - Get the expanded state of the container.

• start - Start the container

• stop - Stop the container

• restart - Restart the container

• freeze - Suspend the container

• unfreeze - Resume the container

• execute - Execute a command on the container. The first argument is a list, in the form of subprocess.Popen
with each item of the command as a separate item in the list. Returns a two part tuple of (stdout, stderr). This
method will block while the command is executed.

• migrate - Migrate the container. The first argument is a client connection to the destination server. This call is
asynchronous, so wait=True is optional. The container on the new client is returned.

• publish - Publish the container as an image. Note the container must be stopped in order to use this method. If
wait=True is passed, then the image is returned.

6.4 Examples

If you’d only like to fetch a single container by its name. . .

>>> client.containers.get('my-container')
<container.Container at 0x7f95d8af72b0>

If you’re looking to operate on all containers of a LXD instance, you can get a list of all LXD containers with all.

>>> client.containers.all()
[<container.Container at 0x7f95d8af72b0>,]

14 Chapter 6. Containers

pylxd Documentation, Release

In order to create a new Container, a container config dictionary is needed, containing a name and the source. A
create operation is asynchronous, so the operation will take some time. If you’d like to wait for the container to be
created before the command returns, you’ll pass wait=True as well.

>>> config = {'name': 'my-container', 'source': {'type': 'none'}}
>>> container = client.containers.create(config, wait=False)
>>> container
<container.Container at 0x7f95d8af72b0>

If you were to use an actual image source, you would be able to operate on the container, starting, stopping, snapshot-
ting, and deleting the container.

>>> config = {'name': 'my-container', 'source': {'type': 'image', 'alias': 'ubuntu/
→˓trusty'}}
>>> container = client.containers.create(config, wait=True)
>>> container.start()
>>> container.freeze()
>>> container.delete()

To modify container’s configuration method save should be called after Container attributes changes.

>>> container = client.containers.get('my-container')
>>> container.ephemeral = False
>>> container.devices = { 'root': { 'path': '/', 'type': 'disk', 'size': '7GB'} }
>>> container.save

6.5 Container Snapshots

Each container carries its own manager for managing Snapshot functionality. It has get, all, and create functionality.

Snapshots are keyed by their name (and only their name, in pylxd; LXD keys them by <container-name>/<snapshot-
name>, but the manager allows us to use our own namespacing).

A container object (returned by get or all) has the following methods:

• rename - rename a snapshot

• publish - create an image from a snapshot. However, this may fail if the image from the snapshot is bigger than
the logical volume that is allocated by lxc. See https://github.com/lxc/lxd/issues/2201 for more details. The
solution is to increase the storage.lvm_volume_size parameter in lxc.

>>> snapshot = container.snapshots.get('an-snapshot')
>>> snapshot.created_at
'1983-06-16T2:38:00'
>>> snapshot.rename('backup-snapshot', wait=True)
>>> snapshot.delete(wait=True)

To create a new snapshot, use create with a name argument. If you want to capture the contents of RAM in the
snapshot, you can use stateful=True. .. note:: Your LXD requires a relatively recent version of CRIU for this.

>>> snapshot = container.snapshots.create(
... 'my-backup', stateful=True, wait=True)
>>> snapshot.name
'my-backup'

6.5. Container Snapshots 15

https://github.com/lxc/lxd/issues/2201

pylxd Documentation, Release

6.6 Container files

Containers also have a files manager for getting and putting files on the container. The following methods are available
on the files manager:

• put - push a file into the container.

• get - get a file from the container.

• delete_available - If the file_delete extension is available on the lxc host, then this method returns True and the
delete method is available.

• delete - delete a file on the container.

Note: All file operations use uid and gid of 0 in the container. i.e. root.

>>> filedata = open('my-script').read()
>>> container.files.put('/tmp/my-script', filedata)
>>> newfiledata = container.files.get('/tmp/my-script2')
>>> open('my-script2', 'wb').write(newfiledata)

16 Chapter 6. Containers

CHAPTER 7

Images

Image objects are the base for which containers are built. Many of the methods of images are asynchronous, as they
required reading and writing large files.

7.1 Manager methods

Images can be queried through the following client manager methods:

• all() - Retrieve all images.

• get() - Get a specific image, by its fingerprint.

• get_by_alias() - Ger a specific image using its alias.

And create through the following methods, there’s also a copy method on an image:

• create(data, public=False, wait=False) - Create a new image. The first argument is the binary data of the image
itself. If the image is public, set public to True.

• create_from_simplestreams(server, alias, public=False, auto_update=False, wait=False) - Create an image
from simplestreams.

• create_from_url(url, public=False, auto_update=False, wait=False) - Create an image from a url.

7.2 Image attributes

For more information about the specifics of these attributes, please see the LXD documentation.

• aliases - A list of aliases for this image

• auto_update - Whether the image should auto-update

• architecture - The target architecture for the image

• cached - Whether the image is cached

17

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10imagesfingerprint

pylxd Documentation, Release

• created_at - The date and time the image was created

• expires_at - The date and time the image expires

• filename - The name of the image file

• fingerprint - The image fingerprint, a sha2 hash of the image data itself. This unique key identifies the image.

• last_used_at - The last time the image was used

• properties - The configuration of image itself

• public - Whether the image is public or not

• size - The size of the image

• uploaded_at - The date and time the image was uploaded

• update_source - A dict of update informations

7.3 Image methods

• export - Export the image. Returns a file object with the contents of the image. Note: Prior to pylxd 2.1.1, this
method returned a bytestring with data; as it was not unbuffered, the API was severely limited.

• add_alias - Add an alias to the image.

• delete_alias - Remove an alias.

• copy - Copy the image to another LXD client.

7.4 Examples

Image operations follow the same protocol from the client‘s images manager (i.e. get, all, and create). Images are
keyed on a sha-1 fingerprint of the image itself. To get an image. . .

>>> image = client.images.get(
... 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855')
>>> image
<image.Image at 0x7f95d8af72b0>

Once you have an image, you can operate on it as before:

>>> image.public
False
>>> image.public = True
>>> image.update()

To create a new Image, you’ll open an image file, and pass that to create. If the image is to be public, public=True.
As this is an asynchonous operation, you may also want to wait=True.

>>> image_data = open('an_image.tar.gz').read()
>>> image = client.images.create(image_data, public=True, wait=True)
>>> image.fingerprint
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'

18 Chapter 7. Images

CHAPTER 8

Networks

Network objects show the current networks available to lxd. They are read-only via the REST API.

8.1 Manager methods

Networks can be queried through the following client manager methods:

• all() - Retrieve all networks

• get() - Get a specific network, by its name.

8.2 Network attributes

• name - The name of the network

• type - The type of the network

• used_by - A list of containers using this network

• config - The configuration associated with the network.

• managed - Boolean; whether LXD manages the network

19

pylxd Documentation, Release

20 Chapter 8. Networks

CHAPTER 9

Profiles

Profile describe configuration options for containers in a re-usable way.

9.1 Manager methods

Profiles can be queried through the following client manager methods:

• all() - Retrieve all profiles

• exists() - See if a profile with a name exists. Returns boolean.

• get() - Get a specific profile, by its name.

• create(name, config, devices) - Create a new profile. The name of the profile is required. config and devices
dictionaries are optional, and the scope of their contents is documented in the LXD documentation.

9.2 Profile attributes

• config - config options for containers

• description - The description of the profile

• devices - device options for containers

• name - The name of the profile

• used_by - A list of containers using this profile

9.3 Profile methods

• rename - Rename the profile.

• save - save a profile. This uses the PUT HTTP method and not the PATCH.

21

pylxd Documentation, Release

• delete - deletes a profile.

9.4 Examples

Profile operations follow the same manager-style as Containers and Images. Profiles are keyed on a unique name.

>>> profile = client.profiles.get('my-profile')
>>> profile
<profile.Profile at 0x7f95d8af72b0>

The profile can then be modified and saved.

>>> profile.config = profile.config.update({'security.nesting': 'true'})
>>> profile.update()

To create a new profile, use create with a name, and optional config and devices config dictionaries.

>>> profile = client.profiles.create(
... 'an-profile', config={'security.nesting': 'true'},
... devices={'root': {'path': '/', 'size': '10GB', 'type': 'disk'}})

22 Chapter 9. Profiles

CHAPTER 10

Operations

Operation objects detail the status of an asynchronous operation that is taking place in the background. Some oper-
ations (e.g. image related actions) can take a long time and so the operation is performed in the background. They
return an operation id that may be used to discover the state of the operation.

10.1 Manager methods

Operations can be queried through the following client manager methods:

• get() - Get a specific network, by its name.

• wait_for_operation() - get an operation, but wait until it is complete before returning the operation object.

10.2 Operation object methods

• wait() - Wait for the operation to complete and return. Note that this can raise a LXDAPIExceptiion if the
operations fails.

23

pylxd Documentation, Release

24 Chapter 10. Operations

CHAPTER 11

Storage Pools

LXD supports creating and managing storage pools and storage volumes. General keys are top-level. Driver specific
keys are namespaced by driver name. Volume keys apply to any volume created in the pool unless the value is
overridden on a per-volume basis.

Storage Pool objects represent the json object that is returned from GET /1.0/storage-pools/<name> and then the
associated methods that are then available at the same endpoint.

11.1 Manager methods

Storage-pools can be queried through the following client manager methods:

• all() - Return a list of storage pools.

• get() - Get a specific storage-pool, by its name.

• exists() - Return a boolean for whether a storage-pool exists by name.

• create() - Create a storage-pool. Note the config in the create class method is the WHOLE json object
described as ‘input‘ in the API docs. e.g. the ‘config’ key in the API docs would actually be config.config as
passed to this method.

11.2 Storage-pool attributes

For more information about the specifics of these attributes, please see the LXD documentation.

• name - the name of the storage pool

• driver - the driver (or type of storage pool). e.g. ‘zfs’ or ‘btrfs’, etc.

• used_by - which containers (by API endpoint /1.0/containers/<name>) are using this storage-pool.

• config - a string (json encoded) with some information about the storage-pool. e.g. size, source (path), vol-
ume.size, etc.

25

https://github.com/lxc/lxd/blob/master/doc/rest-api.md#10storage-pools

pylxd Documentation, Release

11.3 Storage-pool methods

The are no storage pool methods defined yet.

26 Chapter 11. Storage Pools

CHAPTER 12

Contributing

pyLXD development is done on Github. Pull Requests and Issues should be filed there. We try and respond to PRs
and Issues within a few days.

If you would like to contribute large features or have big ideas, it’s best to post on to the lxc-users list to discuss your
ideas before submitting PRs.

12.1 Code standards

pyLXD follows PEP 8 as closely as practical. To check your compliance, use the pep8 tox target:

tox -epep8

12.2 Testing

pyLXD tries to follow best practices when it comes to testing. PRs are gated by Travis CI and CodeCov. It’s best to
submit tests with new changes, as your patch is unlikely to be accepted without them.

To run the tests, you can use nose:

nosetests pylxd

. . . or, alternatively, you can use tox (with the added bonus that it will test python 2.7, python 3, and pypy, as well as
run pep8). This is the way that Travis will test, so it’s recommended that you run this at least once before submitting
a Pull Request.

27

https://github.com/lxc/pylxd
https://lists.linuxcontainers.org/listinfo/lxc-users
https://www.python.org/dev/peps/pep-0008/
https://travis-ci.org/lxc/pylxd
https://codecov.io/gh/lxc/pylxd

pylxd Documentation, Release

28 Chapter 12. Contributing

CHAPTER 13

API documentation

13.1 Client

class pylxd.client.Client(endpoint=None, version=’1.0’, cert=None, verify=True, time-
out=None)

Client class for LXD REST API.

This client wraps all the functionality required to interact with LXD, and is meant to be the sole entry point.

containers
Instance of Client.Containers:

images
Instance of Client.Images.

operations
Instance of Client.Operations.

profiles
Instance of Client.Profiles.

api
This attribute provides tree traversal syntax to LXD’s REST API for lower-level interaction.

Use the name of the url part as attribute or item of an api object to create another api object appended with
the new url part name, ie:

>>> api = Client().api
/
>>> response = api.get()
Check status code and response
>>> print response.status_code, response.json()
/containers/test/
>>> print api.containers['test'].get().json()

events(websocket_client=None)
Get a websocket client for getting events.

29

pylxd Documentation, Release

/events is a websocket url, and so must be handled differently than most other LXD API endpoints. This
method returns a client that can be interacted with like any regular python socket.

An optional websocket_client parameter can be specified for implementation-specific handling of events
as they occur.

13.2 Exceptions

class pylxd.exceptions.LXDAPIException(response)
A generic exception for representing unexpected LXD API responses.

LXD API responses are clearly documented, and are either a standard return value, and background operation,
or an error. This exception is raised on an error case, or when the response status code is not expected for the
response.

This exception should only be raised in cases where the LXD REST API has returned something unexpected.

class pylxd.exceptions.NotFound(response)
An exception raised when an object is not found.

class pylxd.exceptions.ClientConnectionFailed
An exception raised when the Client connection fails.

13.3 Certificate

class pylxd.models.Certificate(client, **kwargs)
A LXD certificate.

classmethod all(client)
Get all certificates.

classmethod create(client, password, cert_data)
Create a new certificate.

classmethod get(client, fingerprint)
Get a certificate by fingerprint.

13.4 Container

class pylxd.models.Container(*args, **kwargs)
An LXD Container.

This class is not intended to be used directly, but rather to be used via Client.containers.create.

class FilesManager(client, container)
A pseudo-manager for namespacing file operations.

delete_available()
File deletion is an extension API and may not be available. https://github.com/lxc/lxd/blob/master/
doc/api-extensions.md#file_delete

put(filepath, data, mode=None, uid=None, gid=None)
Push a file to the container.

This pushes a single file to the containers file system named by the filepath.

30 Chapter 13. API documentation

https://github.com/lxc/lxd/blob/master/doc/api-extensions.md#file_delete
https://github.com/lxc/lxd/blob/master/doc/api-extensions.md#file_delete

pylxd Documentation, Release

Parameters
• filepath (str) – The path in the container to to store the data in.
• data (bytes or str) – The data to store in the file.
• mode (oct | int | str) – The unit mode to store the file with. The default of

None stores the file with the current mask of 0700, which is the lxd default.
• uid (int) – The uid to use inside the container. Default of None results in 0 (root).
• gid (int) – The gid to use inside the container. Default of None results in 0 (root).

Returns True if the file store succeeded otherwise False.
Return type Bool

classmethod all(client)
Get all containers.

Containers returned from this method will only have the name set, as that is the only property returned
from LXD. If more information is needed, Container.sync is the method call that should be used.

classmethod create(client, config, wait=False)
Create a new container config.

execute(commands, environment={})
Execute a command on the container.

In pylxd 2.2, this method will be renamed execute and the existing execute method removed.

classmethod exists(client, name)
Determine whether a container exists.

freeze(timeout=30, force=True, wait=False)
Freeze the container.

generate_migration_data()
Generate the migration data.

This method can be used to handle migrations where the client connection uses the local unix socket. For
more information on migration, see Container.migrate.

classmethod get(client, name)
Get a container by name.

migrate(new_client, wait=False)
Migrate a container.

Destination host information is contained in the client connection passed in.

If the container is running, it either must be shut down first or criu must be installed on the source and
destination machines.

publish(public=False, wait=False)
Publish a container as an image.

The container must be stopped in order publish it as an image. This method does not enforce that constraint,
so a LXDAPIException may be raised if this method is called on a running container.

If wait=True, an Image is returned.

rename(name, wait=False)
Rename a container.

restart(timeout=30, force=True, wait=False)
Restart the container.

start(timeout=30, force=True, wait=False)
Start the container.

13.4. Container 31

pylxd Documentation, Release

stop(timeout=30, force=True, wait=False)
Stop the container.

unfreeze(timeout=30, force=True, wait=False)
Unfreeze the container.

class pylxd.models.Snapshot(client, **kwargs)
A container snapshot.

publish(public=False, wait=False)
Publish a snapshot as an image.

If wait=True, an Image is returned.

This functionality is currently broken in LXD. Please see https://github.com/lxc/lxd/issues/2201 - The
implementation here is mostly a guess. Once that bug is fixed, we can verify that this works, or file a bug
to fix it appropriately.

rename(new_name, wait=False)
Rename a snapshot.

13.5 Image

class pylxd.models.Image(client, **kwargs)
A LXD Image.

add_alias(name, description)
Add an alias to the image.

classmethod all(client)
Get all images.

copy(new_client, public=None, auto_update=None, wait=False)
Copy an image to a another LXD.

Destination host information is contained in the client connection passed in.

classmethod create(client, image_data, metadata=None, public=False, wait=True)
Create an image.

If metadata is provided, a multipart form data request is formed to push metadata and image together in a
single request. The metadata must be a tar achive.

wait parameter is now ignored, as the image fingerprint cannot be reliably determined consistently until
after the image is indexed.

classmethod create_from_simplestreams(client, server, alias, public=False,
auto_update=False)

Copy an image from simplestreams.

classmethod create_from_url(client, url, public=False, auto_update=False)
Copy an image from an url.

delete_alias(name)
Delete an alias from the image.

classmethod exists(client, fingerprint, alias=False)
Determine whether an image exists.

If alias is True, look up the image by its alias, rather than its fingerprint.

32 Chapter 13. API documentation

https://github.com/lxc/lxd/issues/2201

pylxd Documentation, Release

export()
Export the image.

Because the image itself may be quite large, we stream the download in 1kb chunks, and write it to a
temporary file on disk. Once that file is closed, it is deleted from the disk.

classmethod get(client, fingerprint)
Get an image.

classmethod get_by_alias(client, alias)
Get an image by its alias.

13.6 Network

class pylxd.models.Network(client, **kwargs)
A LXD network.

classmethod all(client)
Get all networks.

delete()
Delete is not available for networks.

classmethod get(client, name)
Get a network by name.

save(wait=False)
Save is not available for networks.

13.7 Operation

class pylxd.models.Operation(**kwargs)
A LXD operation.

classmethod get(client, operation_id)
Get an operation.

wait()
Wait for the operation to complete and return.

classmethod wait_for_operation(client, operation_id)
Get an operation and wait for it to complete.

13.8 Profile

class pylxd.models.Profile(client, **kwargs)
A LXD profile.

classmethod all(client)
Get all profiles.

classmethod create(client, name, config=None, devices=None)
Create a profile.

13.6. Network 33

pylxd Documentation, Release

classmethod exists(client, name)
Determine whether a profile exists.

classmethod get(client, name)
Get a profile.

rename(new_name)
Rename the profile.

13.9 Storage Pool

class pylxd.models.StoragePool(client, **kwargs)
A LXD storage_pool.

This corresponds to the LXD endpoint at /1.0/storage-pools

classmethod all(client)
Get all storage_pools.

classmethod create(client, config)
Create a storage_pool from config.

delete()
Delete is not available for storage_pools.

classmethod exists(client, name)
Determine whether a storage pool exists.

classmethod get(client, name)
Get a storage_pool by name.

save(wait=False)
Save is not available for storage_pools.

34 Chapter 13. API documentation

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

35

pylxd Documentation, Release

36 Chapter 14. Indices and tables

Index

A
add_alias() (pylxd.models.Image method), 32
all() (pylxd.models.Certificate class method), 30
all() (pylxd.models.Container class method), 31
all() (pylxd.models.Image class method), 32
all() (pylxd.models.Network class method), 33
all() (pylxd.models.Profile class method), 33
all() (pylxd.models.StoragePool class method), 34
api (pylxd.client.Client attribute), 29

C
Certificate (class in pylxd.models), 30
Client (class in pylxd.client), 29
ClientConnectionFailed (class in pylxd.exceptions), 30
Container (class in pylxd.models), 30
Container.FilesManager (class in pylxd.models), 30
containers (pylxd.client.Client attribute), 29
copy() (pylxd.models.Image method), 32
create() (pylxd.models.Certificate class method), 30
create() (pylxd.models.Container class method), 31
create() (pylxd.models.Image class method), 32
create() (pylxd.models.Profile class method), 33
create() (pylxd.models.StoragePool class method), 34
create_from_simplestreams() (pylxd.models.Image class

method), 32
create_from_url() (pylxd.models.Image class method), 32

D
delete() (pylxd.models.Network method), 33
delete() (pylxd.models.StoragePool method), 34
delete_alias() (pylxd.models.Image method), 32
delete_available() (pylxd.models.Container.FilesManager

method), 30

E
events() (pylxd.client.Client method), 29
execute() (pylxd.models.Container method), 31
exists() (pylxd.models.Container class method), 31
exists() (pylxd.models.Image class method), 32

exists() (pylxd.models.Profile class method), 33
exists() (pylxd.models.StoragePool class method), 34
export() (pylxd.models.Image method), 32

F
freeze() (pylxd.models.Container method), 31

G
generate_migration_data() (pylxd.models.Container

method), 31
get() (pylxd.models.Certificate class method), 30
get() (pylxd.models.Container class method), 31
get() (pylxd.models.Image class method), 33
get() (pylxd.models.Network class method), 33
get() (pylxd.models.Operation class method), 33
get() (pylxd.models.Profile class method), 34
get() (pylxd.models.StoragePool class method), 34
get_by_alias() (pylxd.models.Image class method), 33

I
Image (class in pylxd.models), 32
images (pylxd.client.Client attribute), 29

L
LXDAPIException (class in pylxd.exceptions), 30

M
migrate() (pylxd.models.Container method), 31

N
Network (class in pylxd.models), 33
NotFound (class in pylxd.exceptions), 30

O
Operation (class in pylxd.models), 33
operations (pylxd.client.Client attribute), 29

P
Profile (class in pylxd.models), 33

37

pylxd Documentation, Release

profiles (pylxd.client.Client attribute), 29
publish() (pylxd.models.Container method), 31
publish() (pylxd.models.Snapshot method), 32
put() (pylxd.models.Container.FilesManager method), 30

R
rename() (pylxd.models.Container method), 31
rename() (pylxd.models.Profile method), 34
rename() (pylxd.models.Snapshot method), 32
restart() (pylxd.models.Container method), 31

S
save() (pylxd.models.Network method), 33
save() (pylxd.models.StoragePool method), 34
Snapshot (class in pylxd.models), 32
start() (pylxd.models.Container method), 31
stop() (pylxd.models.Container method), 31
StoragePool (class in pylxd.models), 34

U
unfreeze() (pylxd.models.Container method), 32

W
wait() (pylxd.models.Operation method), 33
wait_for_operation() (pylxd.models.Operation class

method), 33

38 Index

	Installation
	Getting started
	Client

	Client Authentication
	Generate a certificate
	Authenticate a new keypair

	Events
	Certificates
	Manager methods
	Certificate attributes

	Containers
	Manager methods
	Container attributes
	Container methods
	Examples
	Container Snapshots
	Container files

	Images
	Manager methods
	Image attributes
	Image methods
	Examples

	Networks
	Manager methods
	Network attributes

	Profiles
	Manager methods
	Profile attributes
	Profile methods
	Examples

	Operations
	Manager methods
	Operation object methods

	Storage Pools
	Manager methods
	Storage-pool attributes
	Storage-pool methods

	Contributing
	Code standards
	Testing

	API documentation
	Client
	Exceptions
	Certificate
	Container
	Image
	Network
	Operation
	Profile
	Storage Pool

	Indices and tables

