

Welcome to pylxd’s documentation!

Contents:

	Installation

	Getting started
	Client

	Client Authentication
	Generate a certificate

	Authenticate a new keypair

	Events

	Certificates
	Manager methods

	Certificate attributes

	Containers
	Manager methods

	Container attributes

	Container methods

	Examples

	Container Snapshots

	Container files

	Images
	Manager methods

	Image attributes

	Image methods

	Examples

	Networks
	Manager methods

	Network attributes

	Profiles
	Manager methods

	Profile attributes

	Profile methods

	Examples

	Contributing
	Code standards

	Testing

	API documentation
	Client

	Certificate

	Container

	Image

	Network

	Operation

	Profile

Indices and tables

	Index

	Module Index

	Search Page

Installation

If you’re running on Ubuntu Xenial or greater:

sudo apt-get install python-pylxd lxd

Otherwise you can track LXD development on other Ubuntu releases:

sudo add-apt-repository ppa:ubuntu-lxc/lxd-git-master && sudo apt-get update
sudo apt-get install lxd

Or install pylxd using pip:

pip install pylxd

Getting started

Client

Once you have installed, you’re ready to
instantiate an API client to start interacting with the LXD daemon on
localhost:

>>> from pylxd import Client
>>> client = Client()

If your LXD instance is listening on HTTPS, you can pass a two part tuple
of (cert, key) as the cert argument.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('/path/to/client.crt', '/path/to/client.key'))

Note: in the case where the certificate is self signed (LXD default),
you may need to pass verify=False.

Querying LXD

LXD exposes a number of objects via its REST API that are used to orchestrate
containers. Those objects are all accessed via manager attributes on the client
itself. This includes certificates, containers, images, networks,
operations, and profiles. Each manager has methods for querying the
LXD instance. For example, to get all containers in a LXD instance

For specific manager methods, please see the documentation for each object.

pylxd Objects

Each LXD object has an analagous pylxd object. Returning to the previous
client.containers.all example, a Container object is manipulated as
such:

Each pylxd object has a lifecycle which includes support for
transactional changes. This lifecycle includes the following
methods and attributes:

	sync() - Synchronize the object with the server. This method is
called implicitly when accessing attributes that have not yet been
populated, but may also be called explicitly. Why would attributes
not yet be populated? When retrieving objects via all, LXD’s
API does not return a full representation.

	dirty - After setting attributes on the object, the object is
considered “dirty”.

	rollback() - Discard all local changes to the object, opting
for a representation taken from the server.

	save() - Save the object, writing changes to the server.

Returning again to the Container example

A note about asynchronous operations

Some changes to LXD will return immediately, but actually occur in the
background after the http response returns. All operations that happen
this way will also take an optional wait parameter that, when True,
will not return until the operation is completed.

Client Authentication

When using LXD over https, LXD uses an asymmetric keypair for authentication.
The keypairs are added to the authentication database after entering the LXD
instance’s “trust password”.

Generate a certificate

To generate a keypair, you should use the openssl command. As an example:

openssl req -newkey rsa:2048 -nodes -keyout lxd.key -out lxd.csr
openssl x509 -signkey lxd.key -in lxd.csr -req -days 365 -out lxd.crt

For more detail on the commands, or to customize the keys, please see the
documentation for the openssl command.

Authenticate a new keypair

If a client is created using this keypair, it would originally be “untrusted”,
essentially meaning that the authentication has not yet occurred.

>>> from pylxd import Client
>>> client = Client(
... endpoint='http://10.0.0.1:8443',
... cert=('lxd.crt', 'lxd.key'))
>>> client.trusted
False

In order to authenticate the client, pass the lxd instance’s trust
password to Client.authenticate

>>> client.authenticate('a-secret-trust-password')
>>> client.trusted
>>> True

Events

LXD provides an /events endpoint that is upgraded to a streaming websocket
for getting LXD events in real-time. The Client’s events
method will return a websocket client that can interact with the
web socket messages.

>>> ws_client = client.events()
>>> ws_client.connect()
>>> ws_client.run()

A default client class is provided, which will block indefinitely, and
collect all json messages in a messages attribute. An optional
websocket_client parameter can be provided when more functionality is
needed. The ws4py library is used to establish the connection; please
see the ws4py documentation for more information.

Certificates

Certificates are used to manage authentications in LXD. Certificates are
not editable. They may only be created or deleted. None of the certificate
operations in LXD are asynchronous.

Manager methods

Certificates can be queried through the following client manager
methods:

	all() - Retrieve all certificates.

	get() - Get a specifit certificate, by its fingerprint.

	create() - Create a new certificate. This method requires
a first argument that is the LXD trust password, and the cert
data, in binary format.

Certificate attributes

Certificates have the following attributes:

	fingerprint - The fingerprint of the certificate. Certificates
are keyed off this attribute.

	certificate - The certificate itself, in PEM format.

	type - The certificate type (currently only “client”)

Containers

Container objects are the core of LXD. Containers can be created,
updated, and deleted. Most of the methods for operating on the
container itself are asynchronous, but many of the methods for getting
information about the container are synchronous.

Manager methods

Containers can be queried through the following client manager
methods:

	all() - Retrieve all containers.

	get() - Get a specific container, by its name.

	create(wait=False) - Create a new container. This method requires
a first argument that is the container name, followed by a config.
The config itself is beyond the scope of this documentation. Please
refer to the LXD documentation for more information. This method
will also return immediately, unless wait is True.

Container attributes

For more information about the specifics of these attributes, please see
the LXD documentation.

	architecture - The container architecture.

	config - The container config

	created_at - The time the container was created

	devices - The devices for the container

	ephemeral - Whether the container is ephemeral

	expanded_config - An expanded version of the config

	expanded_devices - An expanded version of devices

	name - The name of the container. This attribute serves as the
primary identifier of a container.

	profiles - A list of profiles applied to the container

	status - A string representing the status of the container

	status_code - A LXD status code of the container

	stateful - Whether the container is stateful

Container methods

	rename - Rename a container. Because name is the key, it cannot be
renamed by simply changing the name of the container as an attribute
and calling save. The new name is the first argument and, as the method
is asynchronous, you may pass wait=True as well.

	state - Get the expanded state of the container.

	start - Start the container

	stop - Stop the container

	restart - Restart the container

	freeze - Suspend the container

	unfreeze - Resume the container

	execute - Execute a command on the container. The first argument is
a list, in the form of subprocess.Popen with each item of the command
as a separate item in the list. Returns a two part tuple of
(stdout, stderr). This method will block while the command is executed.

	migrate - Migrate the container. The first argument is a client
connection to the destination server. This call is asynchronous, so
wait=True is optional. The container on the new client is returned.

Examples

If you’d only like to fetch a single container by its name…

>>> client.containers.get('my-container')
<container.Container at 0x7f95d8af72b0>

If you’re looking to operate on all containers of a LXD instance, you can
get a list of all LXD containers with all.

>>> client.containers.all()
[<container.Container at 0x7f95d8af72b0>,]

In order to create a new Container, a container
config dictionary is needed, containing a name and the source. A create
operation is asynchronous, so the operation will take some time. If you’d
like to wait for the container to be created before the command returns,
you’ll pass wait=True as well.

>>> config = {'name': 'my-container', 'source': {'type': 'none'}}
>>> container = client.containers.create(config, wait=False)
>>> container
<container.Container at 0x7f95d8af72b0>

If you were to use an actual image source, you would be able to operate
on the container, starting, stopping, snapshotting, and deleting the
container.

>>> container.start()
>>> container.freeze()
>>> container.delete()

Container Snapshots

Each container carries its own manager for managing Snapshot
functionality. It has get, all, and create functionality.

Snapshots are keyed by their name (and only their name, in pylxd; LXD
keys them by <container-name>/<snapshot-name>, but the manager allows
us to use our own namespacing).

To create a new snapshot, use create with a name argument. If you want
to capture the contents of RAM in the snapshot, you can use stateful=True.
Note: Your LXD requires a relatively recent version of CRIU for this.

Container files

Containers also have a files manager for getting and putting files on the
container.

Images

Image objects are the base for which containers are built. Many of
the methods of images are asynchronous, as they required reading and
writing large files.

Manager methods

Images can be queried through the following client manager
methods:

	all() - Retrieve all images.

	get() - Get a specific image, by its fingerprint.

And create through the following methods,
theres also a copy method on an image:

	create(data, public=False, wait=False) - Create a new image. The first
argument is the binary data of the image itself. If the image is public,
set public to True.

	create_from_simplestreams(server, alias, public=False, auto_update=False, wait=False) -
Create an image from simplestreams.

	create_from_url(url, public=False, auto_update=False, wait=False) -
Create an image from a url.

Image attributes

For more information about the specifics of these attributes, please see
the LXD documentation [https://github.com/lxc/lxd/blob/3207c2c67d02b3c7504c118f9af6262747103d65/doc/rest-api.md#10imagesfingerprint].

	aliases - A list of aliases for this image

	auto_update - Whether the image should auto-update

	architecture - The target architecture for the image

	cached - Whether the image is cached

	created_at - The date and time the image was created

	expires_at - The date and time the image expires

	filename - The name of the image file

	fingerprint - The image fingerprint, a sha2 hash of the image data
itself. This unique key identifies the image.

	last_used_at - The last time the image was used

	properties - The configuration of image itself

	public - Whether the image is public or not

	size - The size of the image

	uploaded_at - The date and time the image was uploaded

	update_source - A dict of update informations

Image methods

	export - Export the image. Returns binary data that is the
image itself.

	add_alias - Add an alias to the image.

	delete_alias - Remove an alias.

	copy - Copy the image to another LXD client.

Examples

Image operations follow the same protocol from the client`s
images manager (i.e. get, all, and create). Images are keyed on
a sha-1 fingerprint of the image itself. To get an image…

>>> image = client.images.get(
... 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855')
>>> image
<image.Image at 0x7f95d8af72b0>

Once you have an image, you can operate on it as before:

>>> image.public
False
>>> image.public = True
>>> image.update()

To create a new Image, you’ll open an image file, and pass that to create.
If the image is to be public, public=True. As this is an asynchonous operation,
you may also want to wait=True.

>>> image_data = open('an_image.tar.gz').read()
>>> image = client.images.create(image_data, public=True, wait=True)
>>> image.fingerprint
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'

Networks

Network objects show the current networks available to lxd. They are
read-only via the REST API.

Manager methods

Networks can be queried through the following client manager
methods:

	all() - Retrieve all networks

	get() - Get a specific network, by its name.

Network attributes

	name - The name of the network

	type - The type of the network

	used_by - A list of containers using this network

Profiles

Profile describe configuration options for containers in a re-usable way.

Manager methods

Profiles can be queried through the following client manager
methods:

	all() - Retrieve all networks

	get() - Get a specific network, by its name.

	create(name, config, devices) - Create a new profile. The name of the
profile is required. config and devices dictionaries are optional,
and the scope of their contents is documented in the LXD documentation.

Profile attributes

	name - The name of the network

	type - The type of the network

	used_by - A list of containers using this network

Profile methods

	rename - Rename the profile.

Examples

Profile operations follow the same manager-style as
Containers and Images. Profiles are keyed on a unique name.

>>> profile = client.profiles.get('my-profile')
>>> profile
<profile.Profile at 0x7f95d8af72b0>

The profile can then be modified and saved.

>>> profile.config = profile.config.update({'security.nesting': 'true'})
>>> profile.update()

To create a new profile, use create with a name, and optional config
and devices config dictionaries.

>>> profile = client.profiles.create(
... 'an-profile', config={'security.nesting': 'true'},
... devices={'root': {'path': '/', 'size': '10GB', 'type': 'disk'}})

Contributing

pyLXD development is done on Github [https://github.com/lxc/pylxd]. Pull
Requests and Issues should be filed there. We try and respond to PRs and
Issues within a few days.

If you would like to contribute large features or have big ideas, it’s best
to post on to the lxc-users list [https://lists.linuxcontainers.org/listinfo/lxc-users]
to discuss your ideas before submitting PRs.

Code standards

pyLXD follows PEP 8 [https://www.python.org/dev/peps/pep-0008/] as closely
as practical. To check your compliance, use the pep8 tox target:

tox -epep8

Testing

pyLXD tries to follow best practices when it comes to testing. PRs are gated
by Travis CI [https://travis-ci.org/lxc/pylxd] and
CodeCov [https://codecov.io/gh/lxc/pylxd]. It’s best to submit tests
with new changes, as your patch is unlikely to be accepted without them.

To run the tests, you can use nose:

nosetests pylxd

…or, alternatively, you can use tox (with the added bonus that it will
test python 2.7, python 3, and pypy, as well as run pep8). This is the way
that Travis will test, so it’s recommended that you run this at least once
before submitting a Pull Request.

API documentation

Client

	
class pylxd.client.Client(endpoint=None, version='1.0', cert=None, verify=True)

	Client class for LXD REST API.

This client wraps all the functionality required to interact with
LXD, and is meant to be the sole entry point.

	
containers

	Instance of Client.Containers:

	
images

	Instance of Client.Images.

	
operations

	Instance of Client.Operations.

	
profiles

	Instance of Client.Profiles.

	
api

	This attribute provides tree traversal syntax to LXD’s REST API for
lower-level interaction.

Use the name of the url part as attribute or item of an api object to
create another api object appended with the new url part name, ie:

>>> api = Client().api
/
>>> response = api.get()
Check status code and response
>>> print response.status_code, response.json()
/containers/test/
>>> print api.containers['test'].get().json()

	
events(websocket_client=None)

	Get a websocket client for getting events.

/events is a websocket url, and so must be handled differently than
most other LXD API endpoints. This method returns
a client that can be interacted with like any
regular python socket.

An optional websocket_client parameter can be
specified for implementation-specific handling
of events as they occur.

Certificate

	
class pylxd.certificate.Certificate(client, **kwargs)

	A LXD certificate.

	
classmethod all(client)

	Get all certificates.

	
classmethod create(client, password, cert_data)

	Create a new certificate.

	
classmethod get(client, fingerprint)

	Get a certificate by fingerprint.

Container

	
class pylxd.container.Container(*args, **kwargs)

	An LXD Container.

This class is not intended to be used directly, but rather to be used
via Client.containers.create.

	
class FilesManager(client, container)

	A pseudo-manager for namespacing file operations.

	
classmethod all(client)

	Get all containers.

Containers returned from this method will only have the name
set, as that is the only property returned from LXD. If more
information is needed, Container.sync is the method call
that should be used.

	
classmethod create(client, config, wait=False)

	Create a new container config.

	
execute(commands, environment={})

	Execute a command on the container.

	
freeze(timeout=30, force=True, wait=False)

	Freeze the container.

	
classmethod get(client, name)

	Get a container by name.

	
migrate(new_client, wait=False)

	Migrate a container.

Destination host information is contained in the client
connection passed in.

If the container is running, it either must be shut down
first or criu must be installed on the source and destination
machines.

	
publish(public=False, wait=False)

	Publish a container as an image.

The container must be stopped in order publish it as an image. This
method does not enforce that constraint, so a LXDAPIException may be
raised if this method is called on a running container.

If wait=True, an Image is returned.

	
rename(name, wait=False)

	Rename a container.

	
restart(timeout=30, force=True, wait=False)

	Restart the container.

	
start(timeout=30, force=True, wait=False)

	Start the container.

	
stop(timeout=30, force=True, wait=False)

	Stop the container.

	
unfreeze(timeout=30, force=True, wait=False)

	Unfreeze the container.

	
class pylxd.container.Snapshot(client, **kwargs)

	A container snapshot.

	
publish(public=False, wait=False)

	Publish a snapshot as an image.

If wait=True, an Image is returned.

This functionality is currently broken in LXD. Please see
https://github.com/lxc/lxd/issues/2201 - The implementation
here is mostly a guess. Once that bug is fixed, we can verify
that this works, or file a bug to fix it appropriately.

	
rename(new_name, wait=False)

	Rename a snapshot.

Image

	
class pylxd.image.Image(client, **kwargs)

	A LXD Image.

	
add_alias(name, description)

	Add an alias to the image.

	
classmethod all(client)

	Get all images.

	
copy(new_client, public=None, auto_update=None, wait=False)

	Copy an image to a another LXD.

Destination host information is contained in the client
connection passed in.

	
classmethod create(client, image_data, public=False, wait=False)

	Create an image.

	
classmethod create_from_simplestreams(client, server, alias, public=False, auto_update=False)

	Copy an image from simplestreams.

	
classmethod create_from_url(client, url, public=False, auto_update=False)

	Copy an image from an url.

	
delete_alias(name)

	Delete an alias from the image.

	
export()

	Export the image.

	
classmethod get(client, fingerprint)

	Get an image.

	
classmethod get_by_alias(client, alias)

	Get an image by its alias.

Network

	
class pylxd.network.Network(client, **kwargs)

	A LXD network.

	
classmethod all(client)

	Get all networks.

	
delete()

	Delete is not available for networks.

	
classmethod get(client, name)

	Get a network by name.

	
save(wait=False)

	Save is not available for networks.

Operation

	
class pylxd.operation.Operation(**kwargs)

	A LXD operation.

	
classmethod get(client, operation_id)

	Get an operation.

	
wait()

	Wait for the operation to complete and return.

	
classmethod wait_for_operation(client, operation_id)

	Get an operation and wait for it to complete.

Profile

	
class pylxd.profile.Profile(client, **kwargs)

	A LXD profile.

	
classmethod all(client)

	Get all profiles.

	
classmethod create(client, name, config=None, devices=None)

	Create a profile.

	
classmethod get(client, name)

	Get a profile.

	
rename(new_name)

	Rename the profile.

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | U
 | W

A

 	
 	add_alias() (pylxd.image.Image method)

 	all() (pylxd.certificate.Certificate class method)

 	(pylxd.container.Container class method)

 	(pylxd.image.Image class method)

 	(pylxd.network.Network class method)

 	(pylxd.profile.Profile class method)

 	
 	api (pylxd.client.Client attribute)

C

 	
 	Certificate (class in pylxd.certificate)

 	Client (class in pylxd.client)

 	Container (class in pylxd.container)

 	Container.FilesManager (class in pylxd.container)

 	containers (pylxd.client.Client attribute)

 	copy() (pylxd.image.Image method)

 	
 	create() (pylxd.certificate.Certificate class method)

 	(pylxd.container.Container class method)

 	(pylxd.image.Image class method)

 	(pylxd.profile.Profile class method)

 	create_from_simplestreams() (pylxd.image.Image class method)

 	create_from_url() (pylxd.image.Image class method)

D

 	
 	delete() (pylxd.network.Network method)

 	
 	delete_alias() (pylxd.image.Image method)

E

 	
 	events() (pylxd.client.Client method)

 	
 	execute() (pylxd.container.Container method)

 	export() (pylxd.image.Image method)

F

 	
 	freeze() (pylxd.container.Container method)

G

 	
 	get() (pylxd.certificate.Certificate class method)

 	(pylxd.container.Container class method)

 	(pylxd.image.Image class method)

 	(pylxd.network.Network class method)

 	(pylxd.operation.Operation class method)

 	(pylxd.profile.Profile class method)

 	
 	get_by_alias() (pylxd.image.Image class method)

I

 	
 	Image (class in pylxd.image)

 	
 	images (pylxd.client.Client attribute)

M

 	
 	migrate() (pylxd.container.Container method)

N

 	
 	Network (class in pylxd.network)

O

 	
 	Operation (class in pylxd.operation)

 	
 	operations (pylxd.client.Client attribute)

P

 	
 	Profile (class in pylxd.profile)

 	profiles (pylxd.client.Client attribute)

 	
 	publish() (pylxd.container.Container method)

 	(pylxd.container.Snapshot method)

R

 	
 	rename() (pylxd.container.Container method)

 	(pylxd.container.Snapshot method)

 	(pylxd.profile.Profile method)

 	
 	restart() (pylxd.container.Container method)

S

 	
 	save() (pylxd.network.Network method)

 	Snapshot (class in pylxd.container)

 	
 	start() (pylxd.container.Container method)

 	stop() (pylxd.container.Container method)

U

 	
 	unfreeze() (pylxd.container.Container method)

W

 	
 	wait() (pylxd.operation.Operation method)

 	
 	wait_for_operation() (pylxd.operation.Operation class method)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to pylxd’s documentation!

 		
 Installation

 		
 Getting started

 		
 Client

 		
 Querying LXD

 		
 pylxd Objects

 		
 A note about asynchronous operations

 		
 Client Authentication

 		
 Generate a certificate

 		
 Authenticate a new keypair

 		
 Events

 		
 Certificates

 		
 Manager methods

 		
 Certificate attributes

 		
 Containers

 		
 Manager methods

 		
 Container attributes

 		
 Container methods

 		
 Examples

 		
 Container Snapshots

 		
 Container files

 		
 Images

 		
 Manager methods

 		
 Image attributes

 		
 Image methods

 		
 Examples

 		
 Networks

 		
 Manager methods

 		
 Network attributes

 		
 Profiles

 		
 Manager methods

 		
 Profile attributes

 		
 Profile methods

 		
 Examples

 		
 Contributing

 		
 Code standards

 		
 Testing

 		
 API documentation

 		
 Client

 		
 Certificate

 		
 Container

 		
 Image

 		
 Network

 		
 Operation

 		
 Profile

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

